

Руководство для сопровождающих Debian

Osamu Aoki Лев Ламберов

8 февраля 2026 г.

Руководство для сопровождающих Debian
by Osamu Aoki Лев Ламберов

Copyright © 2014-2026 Osamu Aoki

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ”Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Данное руководство было создано на основе информации, содержащейся в следующих доку-
ментах:

• «Создание пакета Debian (руководство по debmake)», copyright © 1997 Джалдхар Виас

• «Практическое руководство нового сопровождающего по созданию пакетов Debian», copyright
© 1997 Уилл Лоу

• «Руководство начинающего разработчика Debian», copyright © 1998—2002 Джосип Родин,
2005—2017 Осаму Аоки, 2010 Крэйг Смолл, а также 2010 Рафаэль Херцог

Последняя версия данного руководства доступна:

• в «пакете debmake-doc» и

• на «веб-сайте Документации Debian».

i

https://tracker.debian.org/pkg/debmake-doc
https://www.debian.org/doc/devel-manuals

Оглавление

1 Предисловие 1

2 Обзор 3

3 Необходимые предварительные требования 5
3.1 Люди вокруг Debian . 5
3.2 Как принять участие . 5
3.3 Социальная динамика Debian . 6
3.4 Техническая памятка . 6
3.5 Документация Debian . 7
3.6 Справочные ресурсы . 8
3.7 Ситуация с архивом . 8
3.8 Подходы к участию . 9
3.9 Начинающий участник и сопровождающий . 10

4 Настройка инструментов 12
4.1 Email setup . 12
4.2 mc setup . 13
4.3 git setup . 13
4.4 quilt setup . 13
4.5 devscripts setup . 14
4.6 sbuild setup . 14
4.7 Persistent chroot setup . 16
4.8 gbp setup . 17
4.9 HTTP-прокси . 17
4.10 Частный репозиторий Debian . 17
4.11 Virtual machines . 17
4.12 Local network with virtual machines . 17

5 Simple packaging 18
5.1 Packaging tarball . 18
5.2 Общая картина . 18
5.3 Что такое debmake? . 19
5.4 Что такое debuild? . 20
5.5 Шаг 1: получение исходного кода основной ветки разработки 20
5.6 Step 2: Generate template files with debmake . 22
5.7 Шаг 3: изменение шаблонных файлов . 26
5.8 Step 4: Building package with debuild . 28
5.9 Step 3 (alternatives): Modification to the upstream source 31
5.10 Patch by «diff -u» approach . 31
5.11 Patch by dquilt approach . 32
5.12 Patch by «dpkg-source --auto-commit» approach . 34

6 Basics for packaging 37
6.1 Работа по созданию пакета . 37
6.2 debhelper package . 39
6.3 Имя пакета и версия . 40
6.4 Родной пакет Debian . 41
6.5 debian/rules file . 42
6.6 debian/control file . 43
6.7 debian/changelog file . 43
6.8 debian/copyright file . 44
6.9 debian/patches/* files . 44
6.10 debian/source/include-binaries file . 45

ii

ОГЛАВЛЕНИЕ

6.11 debian/watch file . 45
6.12 debian/upstream/signing-key.asc file . 45
6.13 debian/salsa-ci.yml file . 46
6.14 Other debian/* files . 46

7 Quality of packaging 51
7.1 Reformat debian/* files with wrap-and-sort . 51
7.2 Validate debian/* files with debputy . 51

8 Check packaging with cme 52

9 Sanitization of the source 53
9.1 Fix with Files-Excluded . 53
9.2 Fix with «debian/rules clean» . 54
9.3 Fix with extend-diff-ignore . 54
9.4 Fix with tar-ignore . 54
9.5 Fix with «git clean -dfx» . 55

10 More on packaging 56
10.1 Package customization . 56
10.2 Customized debian/rules . 56
10.3 Variables for debian/rules . 57
10.4 Новый выпуск основной ветки . 57
10.5 Manage patch queue with dquilt . 58
10.6 Build commands . 58
10.7 Note on sbuild . 58
10.8 Special build cases . 59
10.9 Upload orig.tar.xz . 59
10.10Пропущенные загрузки . 60
10.11Bug reports . 60

11 Продвинутые темы работы над пакетом 62
11.1 Historical perspective . 62
11.2 Current trends . 63
11.3 Note on build system . 63
11.4 Непрерывная интеграция . 63
11.5 Предзагрузка . 64
11.6 Усиление безопасности компилятора . 64
11.7 Повторяемая сборка . 64
11.8 Переменные подстановки . 65
11.9 Пакет библиотеки . 65
11.10Multiarch . 66
11.11Split of a Debian binary package . 66
11.12Сценарии и примеры разделения пакета . 67
11.13Multiarch library path . 67
11.14Multiarch header file path . 68
11.15Multiarch *.pc file path . 68
11.16Библиотека символов . 68
11.17Library package name . 69
11.18Смена библиотек . 70
11.19Безопасная binNMU-загрузка . 71
11.20Отладочная информация . 71
11.21-dbgsym package . 71
11.22debconf . 72

iii

ОГЛАВЛЕНИЕ

12 Packaging with git 73
12.1 Salsa repository . 74
12.2 Salsa account setup . 74
12.3 Salsa CI service . 74
12.4 Branch names . 74
12.5 Patch unapplied Git repository . 75
12.6 Patch by «gbp-pq» approach . 75
12.7 Manage patch queue with gbp-pq . 75
12.8 gbp import-dscs --debsnap . 76
12.9 Note on gbp . 76
12.10The Git repository browser . 77
12.11Git commit history organization . 77
12.12Quasi-native Debian packaging . 77
12.13Patch applied Git repository . 78
12.14Note on dgit . 78

13 Полезные советы 80
13.1 Сборка с использованием кодировки UTF-8 . 80
13.2 Преобразование в кодировку UTF-8 . 80
13.3 Hints for Debugging . 80

14 Tool usages 83
14.1 debdiff . 83
14.2 dget . 83
14.3 mk-origtargz . 84
14.4 origtargz . 84
14.5 git deborig . 84
14.6 dpkg-source -b . 84
14.7 dpkg-source -x . 84
14.8 debc . 84
14.9 bts . 85
14.10dpkg-depcheck . 85

15 Дополнительные примеры 86
15.1 Выборочное применение шаблонов . 86
15.2 Без Makefile (командная оболочка, интерфейс командной оболочки) 88
15.3 Makefile (командная оболочка, интерфейс командной оболочки) 95
15.4 pyproject.toml (Python3, CLI) . 98
15.5 Makefile (командная оболочка, графический интерфейс пользователя) 104
15.6 pyproject.toml (Python3, GUI) . 107
15.7 Makefile (single-binary package) . 110
15.8 Makefile.in + configure (single-binary package) . 113
15.9 Autotools (single-binary package) . 117
15.10CMake (single-binary package) . 121
15.11Autotools (multi-binary package) . 125
15.12CMake (multi-binary package) . 132
15.13Интернационализация . 138
15.14Детали . 143

16 Страница руководства debmake(1) 145
16.1 НАЗВАНИЕ . 145
16.2 СИНТАКСИС . 145
16.3 ОПИСАНИЕ . 145
16.4 Positional arguments . 146
16.5 Options . 146
16.6 ПРИМЕРЫ . 147
16.7 ВСПОМОГАТЕЛЬНЫЕ ПАКЕТЫ . 148
16.8 ПРЕДОСТЕРЕЖЕНИЯ . 148
16.9 ОТЛАДКА . 149

iv

ОГЛАВЛЕНИЕ

16.10АВТОР . 149
16.11ЛИЦЕНЗИЯ . 149
16.12СМОТРИТЕ ТАКЖЕ . 149

17 debmake options 150
17.1 Shortcut option (-i) . 150
17.2 debmake -b . 150
17.3 debmake -B . 151
17.4 debmake -x . 151

v

Аннотация
Данное учебное руководство описывает сборку пакета Debian с помощью команды debmake и

предназначено для обычных пользователей Debian и будущих разработчиков.
Руководство сконцентрировано на современном стиле создания пакетов и содержит множе-

ство простых примеров:

• Создание пакета, содержащего сценарий командной оболочки POSIX

• Создание пакета, содержащего сценарий на языке Python3

• C и Makefile/Autotools/CMake

• Несколько двоичных пакетов с разделяемой библиотекой и т.д.

Данное «Руководство для сопровождающих Debian» может рассматриваться как замена «Ру-
ководства начинающего разработчика Debian».

Глава 1

Предисловие

If you are a somewhat experienced Debian user 1, you may have encountered the following situations:

• Желание установить некоторый пакет ПО, который пока отсутствует в архиве Debian.

• Желание обновить пакет Debian до более свежего выпуска из основной ветки разработки.

• Желание исправить ошибки в пакете Debian с помощью заплат.

If you want to create a Debian package to fulfill these needs and share your work with the community,
you are the target audience of this guide as a prospective Debian maintainer. 2 Welcome to the Debian
community.

Debian has many social and technical rules and conventions to follow, as it is a large volunteer
organization with a rich history. Debian has also developed an extensive array of packaging and archive
maintenance tools to build consistent sets of binary packages that address many technical objectives:

• packages have clearly specified package dependencies and patches and build correctly from scratch
in a clean build environment («Раздел 6.6», «Раздел 6.9», «Раздел 4.6»)

• packages build across many architectures («Раздел 10.3»)

• builds are reproducible («Раздел 11.7»)

• multiarch is supported («Раздел 11.10»)

• bootstrapping new architectures is possible («Раздел 11.5»)

• builds use specific compiler flags to harden security («Раздел 11.6»)

• packages are split optimally into multiple binary packages («Раздел 11.11»)

• library names and contents are managed to ensure smooth transitions on upgrades («Раздел 11.18»)

• installations use interactive prompts correctly (if at all) («Раздел 11.22»)

• continuous integration is used to ensure quality («Раздел 11.4»)

• …

These factors can be overwhelming for many new prospective Debian maintainers. This guide aims
to provide entry points to help them get started. It covers the following:

• Что следует знать до того, как быть вовлечённым в Debian в качестве будущего сопровож-
дающего.

• Как создать простой пакет Debian.

• Какие существуют виды правил для создания пакета Debian.

1You need to know a little about Unix programming, but you don’t need to be an expert. You can learn about basic Debian
system handling from the «Debian Reference». It also contains pointers for learning about Unix programming.

2If you’re not interested in sharing the Debian package, you can address your local needs by compiling and installing the fixed
upstream source package into /usr/local/.

1

https://www.debian.org/doc/user-manuals#quick-reference

ГЛАВА 1. ПРЕДИСЛОВИЕ

• Tips for making the Debian package with minimal effort.

• Examples of making Debian packages in typical scenarios.

The author recognized the limitations of updating the original «New Maintainers’ Guide» with the dh-
make package and decided to create an alternative tool with accompanying documentation to address
modern requirements such as multi-arch. This resulted in the debmake package, initially released as
version 4.0 in 2013. The current debmake version is 5.1.2. It comes with this updated «Guide for Debian
Maintainers» in the debmake-doc package (version: 1.27-1). (In 2016, dh-make was ported from Perl
to Python with updated features.)

Many chores and tips have been integrated into the debmake command allowing this guide to be
terse. This guide also offers many packaging examples for you to get started.

Предостережение

На создание и сопровождение пакета Debian хорошего качества уходят мно-
гие часы. Для выполнения этой задачи сопровождающий Debian должен
быть одновременно и технически компетентным, и усердным.

Some important topics are explained in detail. While some may seem irrelevant to you, please be
patient. Certain corner cases are omitted, and some topics are only covered through external references.
These are intentional choices to keep this guide simple and maintainable.

2

https://www.debian.org/doc/manuals/debmake-doc/
https://www.debian.org/doc/manuals/debmake-doc/

Глава 2

Обзор

The Debian packaging of the package-1.0.tar.xz, containing a simple C source following the «GNU
Coding Standards» and «FHS», can be done with the debmake command as follows.

[base_dir] $ tar --xz -xvf package-1.0.tar.xz
[base_dir] $ cd package-1.0
[package-1.0] $ debmake

... Make manual adjustments of generated configuration files
[package-1.0] $ debuild

Если будет пропущена ручная правка созданных настроечных файлов, то в созданном дво-
ичном пакете будет отсутствовать осмысленное описание, но он будет вполне работоспособным
при использовании команды dpkg для его локального развёртывания.

Предостережение

The debmake command only provides decent template files. These template
files must be manually adjusted to their perfection to comply with the strict quality
requirements of the Debian archive, if the generated package is intended for
general consumption.

If you are new to Debian packaging, focus on understanding the overall process rather than worrying
about the details.

If you are familiar with Debian packaging, you’ll notice that debmake is similar to the dh_make
command. This is because debmake is designed to replace the functionality historically provided by
dh_make. 1

Команда debmake имеет следующие возможности:

• современный стиль создания пакетов

– debian/copyright: «DEP-5» compliant
– debian/control: substvar support, multiarch support, multi binary packages, …
– debian/rules: dh syntax, compiler hardening options, …

• гибкость

– many options (see «Раздел 17.2», «Глава 16», and «Глава 17»)

• разумные действия по умолчанию

– выполнение без остановок с чистыми результатами
– создание мультиархитектурного пакета, если явно не указана опция -m.
– generate the non-native Debian package with the Debian source format «3.0 (quilt)», unless

the -n option is explicitly specified.
1Before dh_make, the deb-make command was popular. The current debmake package starts its version from 4.0 to avoid

version conflicts with the obsolete debmake package, which provided the «deb-make» command.

3

https://www.gnu.org/prep/standards/
https://www.gnu.org/prep/standards/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://dep-team.pages.debian.net/deps/dep5/

ГЛАВА 2. ОБЗОР

The debmake command delegates most of the heavy lifting to its back-end packages: debhelper,
dpkg-dev, devscripts, sbuild, schroot, licensecheck, licenserecon, etc.

Подсказка

Ensure that you properly quote the arguments of the -b, -f, and -w options to
protect them from shell interference.

Подсказка

Неродной пакет Debian — обычный пакет Debian.

Подсказка

Подробный журнал всех примеров сборки пакетов из данной документации
можно получить, следуя инструкциям из «Раздел 15.14».

4

Глава 3

Необходимые предварительные
требования

Here are the prerequisites you need to understand before getting involved with Debian.

3.1 Люди вокруг Debian
Существует несколько типов людей, взаимодействующих с Debian в рамках разный ролей:

• Автор основной ветки разработки: тот, кто создал исходную программу.

• Сопровождающий основной ветки разработки: тот, кто в настоящее время сопровождает
программу.

• Сопровождающий: тот, кто создаёт пакет Debian с программой.

• Поручитель: тот, кто помогает сопровождающим загружать пакеты в официальный архив
пакетов Debian (после проверки содержимого пакетов).

• Ментор: тот, кто помогает начинающим сопровождающим создавать пакеты и проч.

• разработчик Debian (DD): член проекта Debian с полными правами на загрузку в официаль-
ный архив пакетов Debian.

• сопровождающий Debian (DM): тот, кто имеет ограниченные права на загрузку в офици-
альный архив пакетов Debian.

Please note that you can’t become an official Debian Developer (DD) overnight, as it requires more
than just technical skills. Don’t be discouraged by this. If your work is useful to others, you can still upload
your package either as a maintainer through a sponsor or as a Debian Maintainer.

Please note that you don’t need to create new packages to become an official Debian Developer.
Contributing to existing packages can also provide a path to becoming an official Debian Developer.
There are many packages waiting for good maintainers (see «”ˋРаздел 3.8»ˋ”).

3.2 Как принять участие
Чтобы узнать, как принять участие в Debian, обратите внимание не следующее:

• «Как вы можете помочь Debian?» (официальный источник)

• «The Debian GNU/Linux FAQ, Chapter 13 - Contributing to the Debian Project» (semi-official)

• «Debian Wiki, HelpDebian» (дополнительный источник)

• «Сайт новых участников Debian» (официальный источник)

• «ЧаВО для менторов Debian» (дополнительный источник)

5

https://www.debian.org/intro/help
https://www.debian.org/doc/manuals/debian-faq/contributing
https://wiki.debian.org/HelpDebian
https://nm.debian.org/
https://wiki.debian.org/DebianMentorsFaq

ГЛАВА 3. НЕОБХОДИМЫЕ … 3.3. СОЦИАЛЬНАЯ ДИНАМИКА DEBIAN

3.3 Социальная динамика Debian
Для подготовки к взаимодействию с Debian следует понять социальную динамику Debian, которая
состоит в следующем:

• We are all volunteers.

– You can’t impose tasks on others.
– You should be self-motivated to do things.

• Движущей силой является дружеское сотрудничество.

– Ваше участие не должно чрезмерно досаждать остальным.
– Ваш вклад ценен только в том случае, если остальные вам за него признательны.

• Debian is not a school where you get automatic attention from teachers.

– You should be able to learn many things independently.
– Attention from other volunteers is a scarce resource.

• Debian постоянно улучшается.

– От вас ожидается, что вы будете создавать пакеты высокого качества.
– Вы сами должны адаптироваться к изменениям.

Поскольку в оставшейся части настоящего руководства мы концентрируемся исключительно
на технических аспектах создания пакетов, постольку чтобы понять социальную динамику Debian,
рекомендуем обратиться к следующей документации:

• «Debian: 17 years of Free Software, ”do-ocracy”, and democracy» (Introductory slides by the ex-
DPL)

3.4 Техническая памятка
Here are some technical reminders to help other maintainers work on your package easily and effectively,
maximizing the output of Debian as a whole.

• Упростите отладку вашего пакета.

– Делайте ваш пакет простым.
– Не усложняйте ваш пакет.

• Хорошо документируйте ваш пакет.

– Используйте читаемый стиль для исходного кода.
– Оставляйте в коде комментарии.
– Форматируйте свой код везде одинаковым образом.
– Сопровождайте git-репозиторий 1 пакета.

Замечание

Отладка ПО чаще требует большего количества времени, чем написание
изначально работающего ПО.

It is unwise to run your base system under the unstable suite, even for development purposes.

1Подавляющее большинство сопровождающих Debian используют git, а не другие системы управления версиями,
такие как hg, bzr и т.д.

6

http://upsilon.cc/~zack/talks/2011/20110321-taipei.pdf

ГЛАВА 3. НЕОБХОДИМЫЕ … 3.5. ДОКУМЕНТАЦИЯ DEBIAN

• Creation and verification of binary deb packages should use a minimal unstable chroot as described
in «Раздел 4.6».

• Basic interactive package development activities should use an unstable chroot as described in
«Раздел 4.7».

Замечание

Advanced package development activities, such as testing full Desktop systems,
network daemons, and system installer packages, should use the unstable suite
running under «virtualization».

3.5 Документация Debian
Please make yourself ready to read the pertinent part of the latest Debian documentation to generate
perfect Debian packages:

• «Debian Policy Manual»

– The official «must follow» rules (https://www.debian.org/doc/devel-manuals#policy)

• «Debian Developer’s Reference»

– The official «best practice» document (https://www.debian.org/doc/devel-manuals#devref)

• «Guide for Debian Maintainers» — this guide

– A «tutorial reference» document (https://www.debian.org/doc/devel-manuals#debmake-doc)

All these documents are published on https://www.debian.org using the unstable suite versions of
corresponding Debian packages. If you wish to have local access to all these documents from your base
system, please consider using techniques such as «apt-pinning» and «chroot».

Если данное руководство противоречит официальной документации Debian, то верной являет-
ся последняя. В таком случае отправьте сообщение об ошибке в пакете debmake-doc с помощью
команды reportbug.

Также существует следующая альтернативная вводная документация, которую вы можете про-
читать вместе с настоящим руководством:

• «Debian Packaging Tutorial»

– https://www.debian.org/doc/devel-manuals#packaging-tutorial
– https://packages.qa.debian.org/p/packaging-tutorial.html

• «Ubuntu Packaging Guide» (Ubuntu is Debian based.)

– http://packaging.ubuntu.com/html/

• «Debian New Maintainers’ Guide» (predecessor of this tutorial, deprecated)

– https://www.debian.org/doc/devel-manuals#maint-guide
– https://packages.qa.debian.org/m/maint-guide.html

Подсказка

When reading these, you may consider using the debmake command in place
of the dh_make command.

7

https://www.debian.org/doc/manuals/debian-reference/ch09.en.html#_multiple_desktop_systems
https://www.debian.org/doc/devel-manuals#policy
https://www.debian.org/doc/devel-manuals#devref
https://www.debian.org/doc/devel-manuals#debmake-doc
https://www.debian.org
https://www.debian.org/doc/manuals/debian-reference/ch02.en.html#_tweaking_candidate_version
https://en.wikipedia.org/wiki/Chroot
https://www.debian.org/doc/devel-manuals#packaging-tutorial
https://packages.qa.debian.org/p/packaging-tutorial.html
http://packaging.ubuntu.com/html/
https://www.debian.org/doc/devel-manuals#maint-guide
https://packages.qa.debian.org/m/maint-guide.html

ГЛАВА 3. НЕОБХОДИМЫЕ … 3.6. СПРАВОЧНЫЕ РЕСУРСЫ

3.6 Справочные ресурсы
Before deciding to ask your question in a public forum, please do your part by reading the relevant
documentation:

• Информацию о пакете, доступную с помощью команд aptitude, apt-cache и dpkg.

• Файлы в каталоге /usr/share/doc/пакет для всех релевантных пакетов.

• Содержимое man команда для всех релевантных команд.

• Содержимое info команда для всех релевантных команд.

• Содержимое «архива списка рассылки debian-mentors@lists.debian.org».

• Содержимое «архива списка рассылки debian-devel@lists.debian.org».

You can find your desired information effectively by using a well-formed search string such as ”keyword
site:lists.debian.org” to limit the search domain of the web search engine.

Creating a small test package is a good way to learn the details of packaging. Inspecting existing
well-maintained packages is the best way to learn how other people make packages.

Если у вас всё ещё остались вопросы по поводу создания пакетов, вы можете задать их в
следующих списках рассылки:

• debian-mentors@lists.debian.org mailing list. (This mailing list is for the novice.)

• debian-devel@lists.debian.org mailing list. (This mailing list is for the expert.)

• IRC such as #debian-mentors.

• Teams focusing on a specific set of packages. (Full list at https://wiki.debian.org/Teams)

• Списки рассылки, в которых принято общаться на отличных от английского языках.

– «debian-devel-{french,italian,portuguese,spanish}@lists.debian.org»
– «debian-chinese-gb@lists.debian.org» (This mailing list is for general (Simplified) Chinese

discussion.)
– «debian-devel@debian.or.jp»

More experienced Debian developers will gladly help you if you ask properly after making the required
efforts.

Предостережение

Debian development is a moving target. Some information found on the web may
be outdated, incorrect, or non-applicable. Please use such information carefully.

3.7 Ситуация с архивом
Пожалуйста, поймите ситуацию с архивом Debian.

• В Debian уже имеются пакеты для большинства видов программ.

• Число пакетов в архиве Debian уже в несколько раз превышает число активных сопровож-
дающих.

• К сожалению, некоторые пакеты нуждаются в должном внимании сопровождающих.

8

https://lists.debian.org/debian-mentors/
https://lists.debian.org/debian-devel/
mailto:debian-mentors@lists.debian.org
mailto:debian-devel@lists.debian.org
https://www.debian.org/support#irc
https://wiki.debian.org/Teams
https://lists.debian.org/devel.html
https://lists.debian.org/debian-chinese-gb/
http://www.debian.or.jp/community/ml/openml.html#develML

ГЛАВА 3. НЕОБХОДИМЫЕ … 3.8. ПОДХОДЫ К УЧАСТИЮ

Поэтому, участие в работе над уже добавленными в архив пакетами более чем ценно и жела-
тельно (и гораздо больше вероятность получить поручительство для загрузки) со стороны других
сопровождающих.

Подсказка

The wnpp-alert command from the devscripts package can check for installed
packages that are up for adoption or orphaned.

Подсказка

The how-can-i-help package can show opportunities for contributing to Debian
based on packages installed locally.

3.8 Подходы к участию
Ниже приводится псевдокод на питоноподобном языке, описывающий в программном видевоз-
можности вашего участия в Debian:

if exist_in_debian(program):
if is_team_maintained(program):
join_team(program)

if is_orphaned(program): # maintainer: Debian QA Group
adopt_it(program)

elif is_RFA(program): # Request for Adoption
adopt_it(program)

else:
if need_help(program):
contact_maintainer(program)
triaging_bugs(program)
preparing_QA_or_NMU_uploads(program)

else:
leave_it(program)

else: # new packages
if not is_good_program(program):
give_up_packaging(program)

elif not is_distributable(program):
give_up_packaging(program)

else: # worth packaging
if is_ITPed_by_others(program):
if need_help(program):
contact_ITPer_for_collaboration(program)

else:
leave_it_to_ITPer(program)

else: # really new
if is_applicable_team(program):
join_team(program)

if is_DFSG(program) and is_DFSG(dependency(program)):
file_ITP(program, area="main") # This is Debian

elif is_DFSG(program):
file_ITP(program, area="contrib") # This is not Debian

else: # non-DFSG
file_ITP(program, area="non-free") # This is not Debian

package_it_and_close_ITP(program)

Где:

9

ГЛАВА 3. НЕОБХОДИМЫЕ … 3.9. НАЧИНАЮЩИЙ УЧАСТНИК И …

• Для функций exist_in_debian() и is_team_maintained() нужно проверить следующее:

– команду aptitude
– веб-страницу «пакеты Debian»
– Debian wiki «Teams» page

• Для функций is_orphaned(), is_RFA() и is_ITPed_by_others() нужно проверить следующее:

– вывод команды wnpp-alert
– «пакеты требующие доработки и будущие»
– «журналы отчётов об ошибках Debian: ошибки в псевдопакете wnpp в нестабильном

выпуске»
– «пакеты Debian, которым требуется внимание и забота»
– «ошибки в пакете wnpp по меткам debtag»

• Для функции is_good_program() нужно проверить следующее:

– программа должна быть полезна
– программа не усложняет поддержку безопасности и сопровождение системы Debian
– программа хорошо документирована, а её код понятен (то есть, не обфусцирован)
– авторы программы согласны с созданием пакета и дружественно относятся к Debian 2

• Для функций is_it_DFSG() и is_its_dependency_DFSG() нужно проверить следующее:

– «Критерии Debian по определению Свободного ПО» (DFSG).

• Для функции is_it_distributable() нужно проверить следующее:

– ПО должно иметь лицензию и лицензия должна разрешать распространение ПО.

You either need to file an ITP or adopt a package to start working on it. See the «Debian Developer’s
Reference»:

• «5.1. Новые пакеты».

• «5.9. Перемещение, удаление, переименование, придание статуса осиротевшего, усынов-
ление и повторное введение пакетов».

3.9 Начинающий участник и сопровождающий
Начинающий участник и сопровождающий могут недоумевать по поводу того, что же следует изу-
чить, чтобы начать участвовать в Debian. Ниже приводятся некоторые предложения в зависимости
от того, чем вы хотите заниматься.

• Создание пакетов

– Основы командной оболочки POSIX и инструмента make.
– Некоторое зачаточное знание Perl и Python.

• Перевод

– Основы работы системы перевода PO.

• Документация

– Basics of text markups (XML, ReST, Wiki, …).

Начинающий участник и сопровождающий могут недоумевать по поводу того, где же начать
участвовать в Debian. Ниже приводятся некоторые предложения в зависимости от ваших навыков.

2Это не является абсолютным требованием. Тем не менее, враждебные разработчики основной ветки могут стать тем,
что будет опустошать ресурсы всех нас. С дружественными разработчиками можно консультироваться в решении любых
проблем с программой.

10

https://www.debian.org/distrib/packages
https://wiki.debian.org/Teams
https://www.debian.org/devel/wnpp/
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=wnpp;dist=unstable
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=wnpp;dist=unstable
https://wnpp.debian.net/
https://wnpp-by-tags.debian.net/
https://www.debian.org/social_contract#guidelines
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#newpackage
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#archive-manip
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#archive-manip

ГЛАВА 3. НЕОБХОДИМЫЕ … 3.9. НАЧИНАЮЩИЙ УЧАСТНИК И …

• Навыки работы с командной оболочкой POSIX, Perl и Python:

– Отправляйте заплаты для программы установки Debian.
– Send patches to the Debian packaging helper scripts such as devscripts, sbuild, schroot,

etc. mentioned in this document.

• Навыки C и C++:

– Отправляйте заплаты для пакетов, имеющих приоритеты required и important.

• Навыки работы с отличными от английского языками:

– Отправляйте заплаты для PO-файлов программы установки Debian.
– Отправляйте заплаты для PO-файлов пакетов, имеющих приоритеты required и important.

• Навыки написания документации:

– Обновляйте содержание «Debian Wiki».
– Отправляйте заплаты к существующей «документации Debian».

Эта деятельность даст вам возможность познакомиться с другими участниками Debian и улуч-
шить вашу репутацию.

Начинающему сопровождающему следует избегать работу над пакетами, содержащими про-
граммы с высокими рисками в плане безопасности:

• программы, имеющие флаги доступа setuid или setgid

• службы

• программы, устанавливаемые в каталоги /sbin/ или /usr/sbin/

Когда вы получите больше опыта в работе над пакетами, вы сможете создавать пакеты и с
такими программами.

11

https://wiki.debian.org/
https://www.debian.org/doc/

Глава 4

Настройка инструментов

В сборочном окружении должен быть установлен пакет build-essential.
The devscripts package should be installed in the development environment of the maintainer.
It is a good idea to install and set up all of the popular set of packages mentioned in this chapter.

These enable us to share the common baseline working environment, although these are not necessarily
absolute requirements.

Please also consider to install the tools mentioned in the «Overview of Debian Maintainer Tools» in
the «Debian Developer’s Reference», as needed.

Предостережение

Настройки инструментов, представленные ниже, являются лишь примером
и могут быть неактуальны при использовании самых свежих пакетов. Раз-
работка Debian является движущейся целью. Обязательно прочтите соот-
ветствующую документацию и при необходимости обновите настройки.

4.1 Email setup
Различные инструменты сопровождения Debian назначают ваш адрес электронной почты и ваше
имя из переменных окружения $DEBEMAIL и $DEBFULLNAME.

Let’s set these environment variables by adding the following lines to ~/.bashrc 1.
Добавьте в файл ~/.bashrc

DEBEMAIL="osamu@debian.org"
DEBFULLNAME="Osamu Aoki"
export DEBEMAIL DEBFULLNAME

Замечание

The above is for the author of this manual. The configuration and operation
examples presented in this manual use these email address and name settings.
You must use your email address and name for your system.

1Предполагается, что в качестве интерактивной командной оболочки с регистрацией вы используете Bash. Если вы
используете какую-то другую командную оболочку, например, Zsh, то вместо ~/.bashrc необходимо изменить соответству-
ющие файлы настройки.

12

https://www.debian.org/doc/manuals/developers-reference/tools.html

ГЛАВА 4. НАСТРОЙКА ИНСТРУМЕНТОВ 4.2. MC SETUP

4.2 mc setup
Команда mc предлагает вам простой способ работы с файлами. Она может открывать двоич-
ные deb-файлы для проверки их содержимого по простому нажатию клавиши «Ввод» при выборе
соответствующего двоичного deb-файла. В качестве движка эта программа использует команду
dpkg-deb. Настроим её на поддержку простой функции chdir следующим образом.

Добавьте в файл ~/.bashrc

mc related
if [-f /usr/lib/mc/mc.sh]; then
. /usr/lib/mc/mc.sh

fi

4.3 git setup
На сегодняшний день команда git является необходимым инструментом для работы с деревом
исходного кода с историей.

Глобальные пользовательские настройки для команды git, такие как ваши имя и адрес элек-
тронной почты, можно установить в файле ~/.gitconfig следующим образом.

[~] $ git config --global user.name "Osamu Aoki"
[~] $ git config --global user.email osamu@debian.org

Если вы привыкли использовать команды CVS или Subversion, то можете установить несколько
указанных ниже псевдонимов команд.

[~] $ git config --global alias.ci "commit -a"
[~] $ git config --global alias.co checkout

Проверить ваши глобальные настройки можно следующим образом.

[~] $ git config --global --list

Подсказка

Для эффективной работы с историей git-репозитория необходимо использо-
вать какой-нибудь инструмент с графическим интерфейсом пользователя,
например, gitk или gitg.

4.4 quilt setup
Команда quilt предлагает простой метод записи изменений. Для работы с пакетами Debian сле-
дует выполнить настройку так, чтобы изменения записывались в каталог debian/patches/ вместо
каталога patches/ по умолчанию.

Чтобы не менять поведение самой команды quilt, создадим псевдоним dquilt для работы с
пакетами Debian, добавив следующие строки в файл ~/.bashrc. Вторая строка предоставляет ко-
манде dquilt ту же функциональность автодополнения, что и у команды quilt.

Добавьте в файл ~/.bashrc

alias dquilt="quilt --quiltrc=${HOME}/.quiltrc-dpkg"
. /usr/share/bash-completion/completions/quilt
complete -F _quilt_completion $_quilt_complete_opt dquilt

Теперь создадим файл ~/.quiltrc-dpkg со следующим содержимым.

13

ГЛАВА 4. НАСТРОЙКА ИНСТРУМЕНТОВ 4.5. DEVSCRIPTS SETUP

d=.
while [! -d $d/debian -a `readlink -e $d` != /];

do d=$d/..; done
if [-d $d/debian] && [-z $QUILT_PATCHES]; then

if in Debian packaging tree with unset $QUILT_PATCHES
QUILT_PATCHES="debian/patches"
QUILT_PATCH_OPTS="--reject-format=unified"
QUILT_DIFF_ARGS="-p ab --no-timestamps --no-index --color=auto"
QUILT_REFRESH_ARGS="-p ab --no-timestamps --no-index"
QUILT_COLORS="diff_hdr=1;32:diff_add=1;34:diff_rem=1;31:diff_hunk=1;33:"
QUILT_COLORS="${QUILT_COLORS}diff_ctx=35:diff_cctx=33"
if ! [-d $d/debian/patches]; then mkdir $d/debian/patches; fi

fi

See quilt(1) and «How To Survive With Many Patches or Introduction to Quilt (quilt.html)» on how
to use the quilt command.

Для примеров использования см. «Раздел 5.9».
Note that «gbp pq» is able to consume existing debian/patches, automate updating and modifying

the patches, and export them back into debian/patches, all without using quilt nor the need to learn or
configure quilt.

4.5 devscripts setup
Для подписывания пакета Debian вашим закрытым GPG-ключом используется команда debsign,
входящая в состав пакета devscripts.

Команда debuild, входящая в состав пакета devscripts, собирает двоичный пакет и проверяет
его с помощью команды lintian. Полезно иметь более подробный вывод команды lintian.

Вы можете настроить эти команды в файле ~/.devscripts следующим образом.

DEBUILD_DPKG_BUILDPACKAGE_OPTS="-i -I -us -uc"
DEBUILD_LINTIAN_OPTS="-i -I --show-overrides"
DEBSIGN_KEYID="Your_GPG_keyID"

The -i and -I options in DEBUILD_DPKG_BUILDPACKAGE_OPTS for the dpkg-source command
help rebuilding of Debian packages without extraneous contents (see «Глава 9»).

В настоящее время хорошо иметь RSA-ключ длины 4096 бит, см. «Создание нового GPG-
ключа».

4.6 sbuild setup
The sbuild package provides a clean room («chroot») build environment. It offers this efficiently with the
help of schroot using the bind-mount feature of the modern Linux kernel.

Since it is the same build environment as the Debian’s buildd infrastructure, it is always up to date
and comes full of useful features.

It can be customized to offer following features:

• The schroot package to boost the chroot creation speed.

• Пакет lintian предназначен для обнаружения ошибок в пакете.

• The piuparts package to find bugs in the package.

• The autopkgtest package to find bugs in the package.

• Пакет ccache предназначен для увеличения скорости работы gcc (необязательно).

• Пакет libeatmydata1 предназначен для увеличения скорости работы dpkg (необязательно).

• Параллельный запуск make позволяет увеличить скорость сборки (необязательно).

14

file:///usr/share/doc/quilt/quilt.html
https://manpages.debian.org/unstable/git-buildpackage/gbp-pq.1.en.html
https://keyring.debian.org/creating-key.html
https://keyring.debian.org/creating-key.html
https://en.wikipedia.org/wiki/Chroot
https://buildd.debian.org/

ГЛАВА 4. НАСТРОЙКА ИНСТРУМЕНТОВ 4.6. SBUILD SETUP

Let’s set up sbuild environment 2:

[~] $ sudo apt install sbuild piuparts autopkgtest lintian
[~] $ sudo apt install sbuild-debian-developer-setup
[~] $ sudo sbuild-debian-developer-setup -s unstable

Let’s update your group membership to include sbuild and verify it:

[~] $ newgrp -
[~] $ id
uid=1000(<yourname>) gid=1000(<yourname>) groups=...,132(sbuild)

Here, «reboot of system» or «kill -TERM -1» can be used instead to update your group membership
3 .

Let’s create the configuration file ~/.local/sbuild/config.pl in line with recent Debian practice of
«source-only-upload» as:

[~] $ cat >~/.local/sbuild/config.pl << 'EOF'
##
PACKAGE BUILD RELATED (source-only-upload as default)
##
-d
$distribution = 'unstable';
-A
$build_arch_all = 1;
-s
$build_source = 1;
--source-only-changes
$source_only_changes = 1;
-v
$verbose = 1;

##
POST-BUILD RELATED (turn off functionality by setting variables to 0)
##
$run_lintian = 1;
$lintian_opts = ['-i', '-I'];
$run_piuparts = 1;
$piuparts_opts = ['--schroot', 'unstable-amd64-sbuild'];
$run_autopkgtest = 1;
$autopkgtest_root_args = '';
$autopkgtest_opts = ['--', 'schroot', '%r-%a-sbuild'];

##
PERL MAGIC
##
1;
EOF

Замечание

There are some exceptional cases such as NEW uploads, uploads with NEW
binary packages, and security uploads where you can’t do source-only-upload
but are required to upload with binary packages. The above configuration needs
to be adjusted for those exceptional cases.

2Be careful since some older HOWTOs may use different chroot setups.
3Simply «logout and login under some modern GUI Desktop environment» may not update your group membership.

15

https://wiki.debian.org/SourceOnlyUpload
https://wiki.debian.org/SourceOnlyUpload

ГЛАВА 4. НАСТРОЙКА ИНСТРУМЕНТОВ 4.7. PERSISTENT CHROOT SETUP

Подсказка

You may need to add «$chroot_mode = ”schroot”;» to
~/.local/sbuild/config.pl for piuparts if it doesn’t work well under unshare. See
Debian bug: #1125784 and #1126127.

Following document assumes that sbuild is configured this way.
Edit this to your needs. Post-build tests can be turned on and off by assigning 1 or 0 to the corresponding

variables,

Внимание

Необязательные настройки могут вызывать отрицательные последствия.
Отключите их в случае сомнения.

Замечание

Параллельный запуск make может быть неудачным для некоторых уже име-
ющихся пакетов и может сделать журнал сборки сложным для прочтения.

Подсказка

Many sbuild related hints are available at «Раздел 10.7» and
«https://wiki.debian.org/sbuild» .

4.7 Persistent chroot setup

Замечание

Use of independent copied chroot filesystem prevents contaminating the source
chroot used by sbuild.

For building new experimental packages or for debugging buggy packages, let’s setup dedicated
persistent chroot «source:unstable-amd64-desktop» by:

[~] $ sudo cp -a /srv/chroot/unstable-amd64-sbuild /srv/chroot/unstable-amd64- ←↩
desktop

[~] $ sudo tee /etc/schroot/chroot.d/unstable-amd64-desktop-XXXXXX << EOF
[unstable-amd64-desktop]
description=Debian sid/amd64 persistent chroot
groups=root,sbuild
root-groups=root,sbuild
profile=desktop
type=directory
directory=/srv/chroot/unstable-amd64-desktop

16

https://bugs.debian.org/1125784
https://bugs.debian.org/1126127
https://wiki.debian.org/sbuild

ГЛАВА 4. НАСТРОЙКА ИНСТРУМЕНТОВ 4.8. GBP SETUP

union-type=overlay
EOF

Here, desktop profile is used instead of sbuild profile. Please make sure to adjust /etc/schroot/desktop/fstab
to make package source accessible from inside of the chroot.

You can log into this chroot «source:unstable-amd64-desktop» by:

[~] $ sudo schroot -c source:unstable-amd64-desktop

4.8 gbp setup
The git-buildpackage package offers the gbp(1) command. Its user configuration file is ~/.gbp.conf.

Configuration file for "gbp <command>"

[DEFAULT]
the default build command:
builder = sbuild
use pristine-tar:
pristine-tar = True
Use color when on a terminal, alternatives: on/true, off/false or auto
color = auto

4.9 HTTP-прокси
Чтобы сохранить пропускную способность при обращении к репозиторию пакетов Debian вам сле-
дует настроить локальный кэширующий HTTP-прокси. Имеется несколько вариантов:

• Специализированный кэширующий HTTP-прокси, использующий пакет apt-cacher-ng.

• Generic HTTP caching proxy (squid package) configured by squid-deb-proxy package

In order to use this HTTP proxy without manual configuration adjustment, it’s a good idea to install
either auto-apt-proxy or squid-deb-proxy-client package to everywhere.

4.10 Частный репозиторий Debian
Вы можете настроить собственный репозиторий пакетов Debian с помощью пакета reprepro.

4.11 Virtual machines
For testing GUI application, it is a good idea to have virtual machines. Install virt-manager and qemu-
kvm packages.

Use of chroot and virtual machines allows us not to update the whole host PC to the latest unstable
suite.

4.12 Local network with virtual machines
In order to access virtual machines easily over the local network, setting up multicast DNS service
discovery infrastructure by installing avahi-utils is a good idea.

For all running virtual machines and the host PC, we can use each host name appended with .local
for SSH to access each other.

17

Глава 5

Simple packaging

There is an old Latin saying: «Longum iter est per praecepta, breve et efficax per exempla» («It’s a
long way by the rules, but short and efficient with examples»).

5.1 Packaging tarball
Ниже приведён пример создания простого пакета Debian из простого исходного кода на языке C,
использующего в качестве системы сборки Makefile.

Let’s assume this upstream tarball to be debhello-0.0.tar.xz.
Предполагается, что этот тип исходного кода будет установлен как несистемный файл:
Basics for the install from the upstream tarball

[base_dir] $ tar --xz -xmf debhello-0.0.tar.xz
[base_dir] $ cd debhello-0.0
[debhello-0.0] $ make
[debhello-0.0] $ make install

Debian packaging requires changing this «make install» process to install files to the target system
image location instead of the normal location under /usr/local.

Замечание

Примеры создания пакета Debian из других более сложных систем сборки
описаны в «Глава 15».

5.2 Общая картина
The big picture for building a single non-native Debian package from the upstream tarball debhello-
0.0.tar.xz can be summarized as:

• The maintainer obtains the upstream tarball debhello-0.0.tar.xz and untars its contents to the
debhello-0.0 directory.

• Команда debmake добавляет шаблонные файлы исключительно в каталог debian.

– The debhello_0.0.orig.tar.xz symlink is created pointing to the debhello-0.0.tar.xz file.
– Сопровождающий настраивает шаблонные файлы.

• Команда debuild собирает двоичный пакет из подготовленного дерева исходного кода.

– Создаётся файл debhello-0.0-1.debian.tar.xz, содержащий каталог debian.

Общая картина сборки пакета

18

ГЛАВА 5. SIMPLE PACKAGING 5.3. ЧТО ТАКОЕ DEBMAKE?

[base_dir] $ tar --xz -xmf debhello-0.0.tar.xz
[base_dir] $ cd debhello-0.0
[debhello-0.0] $ debmake
I: debmake (version: 5.1.2)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>

...
[debhello-0.0] $... manual customization of debian/* files
[debhello-0.0] $ debuild

...

Подсказка

The debuild command in this and following examples may be substituted by
equivalent commands such as the sbuild command.

Подсказка

If the upstream tarball in the .tar.xz format is available, use it instead of the one
in the .tar.xz and .tar.bz2 formats. The xz compression format offers the better
compression than the gzip and bzip2 compressions.

5.3 Что такое debmake?

Замечание

Actual packaging activities are often performed manually without using debmake
while referencing only existing similar packages and «Debian Policy Manual».

The debmake command is the helper script for the Debian packaging. («Глава 16»)

• It creates good template files for the Debian packages.

• Она всегда устанавливает большинство очевидных опций в разумные значения.

• Создаёт tar-архив основной ветки разработки и необходимую символьную ссылку в случае
их отсутствия.

• Не переписывает существующие файлы настройки в каталоге debian/.

• Поддерживает мультиархитектурные пакеты.

• It provides short extracted license texts as debian/copyright using licensecheck to help license
review.

Эти возможности делают работу с пакетами Debian с помощью debmake простой и современ-
ной.

In retrospective, I created debmake to simplify this documentation. I consider debmake to be more-
or-less a demonstration session generator for tutorial purpose.

The debmake command isn’t the only helper script to make a Debian package. If you are interested
alternative packaging helper tools, please see:

19

https://www.debian.org/doc/debian-policy/

ГЛАВА 5. SIMPLE PACKAGING 5.4. ЧТО ТАКОЕ DEBUILD?

• Debian wiki: «AutomaticPackagingTools» — Extensive comparison of packaging helper scripts

• Debian wiki: «CopyrightReviewTools» — Extensive comparison of copyright review helper scripts

5.4 Что такое debuild?
Ниже приведён обзор команд, похожих на команду debuild.

• Файл debian/rules определяет то, как будет собран двоичный пакет Debian.

• dpkg-buildpackage — официальная команда для сборки двоичного пакета Debian. Для обыч-
ной двоичной сборки она, грубо говоря, выполняет следующую последовательность команд:

– «dpkg-source --before-build» (apply Debian patches, unless they are already applied)
– «fakeroot debian/rules clean»
– «dpkg-source --build» (build the Debian source package)
– «fakeroot debian/rules build»
– «fakeroot debian/rules binary»
– «dpkg-genbuildinfo» (generate a *.buildinfo file)
– «dpkg-genchanges» (generate a *.changes file)
– «fakeroot debian/rules clean»
– «dpkg-source --after-build» (unapply Debian patches, if they are applied during --before-

build)
– «debsign» (sign the *.dsc and *.changes files)

* Если вы следовали инструкциям (см. «Раздел 4.5») и передали программе сборки
опции -us и -uc, то данный шаг будет пропущен, а для подписи требуется вручную
запустить команду debsign.

• Команда debuild представляет собой обёртку для команды dpkg-buildpackage, которая со-
бирает двоичный пакет Debian в окружении с подходящими значениями переменных окру-
жения.

• The sbuild command is a wrapper script to build the Debian binary package under the proper
chroot environment with the proper environment variables.

Замечание

Подробную информацию см. в dpkg-buildpackage(1).

5.5 Шаг 1: получение исходного кода основной ветки разра-
ботки

Получим исходный код основной ветки разработки.
Download debhello-0.0.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-0.0.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-0.0.tar.xz
[base_dir] $ tree
.
+-- debhello-0.0
| +-- Makefile

20

https://wiki.debian.org/AutomaticPackagingTools
https://wiki.debian.org/CopyrightReviewTools

ГЛАВА 5. SIMPLE PACKAGING 5.5. ШАГ 1: ПОЛУЧЕНИЕ ИСХОДНОГО …

| +-- README.md
| +-- src
| +-- hello.c
+-- debhello-0.0.tar.xz

3 directories, 4 files

В нём содержится исходный код на языке C, hello.c, довольно простой.
hello.c

[base_dir] $ cat debhello-0.0/src/hello.c
#include <stdio.h>
int
main()
{

printf("Hello, world!\n");
return 0;

}

Итак, Makefile соответствует «Стандартам написания кода GNU» и «Стандарту иерархии фай-
ловой системы». А именно:

• сборку двоичных файлов с учётом значений $(CPPFLAGS), $(CFLAGS), $(LDFLAGS) и т. д.

• установку файлов с учётом $(DESTDIR) в качестве целевого системного образа

• установку файлов с $(prefix), который можно изменить на /usr

Makefile

[base_dir] $ cat debhello-0.0/Makefile
prefix = /usr/local

all: src/hello

src/hello: src/hello.c
@echo "CFLAGS=$(CFLAGS)" | \

fold -s -w 70 | \
sed -e 's/^/# /'

$(CC) $(CPPFLAGS) $(CFLAGS) $(LDCFLAGS) -o $@ $^

install: src/hello
install -D src/hello \

$(DESTDIR)$(prefix)/bin/hello

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello

.PHONY: all install clean distclean uninstall

Замечание

В приведённом ниже примере применение команды echo к $(CFLAGS) ис-
пользуется для проверки настройки сборочных флагов.

21

https://www.gnu.org/prep/standards/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

ГЛАВА 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES …

5.6 Step 2: Generate template files with debmake
Вывод команды debmake довольно подробен, в нём объяснены выполняемые действия, напри-
мер, как это указано ниже.

The output from the debmake command with -x1 option

[base_dir] $ cd debhello-0.0
[debhello-0.0] $ debmake -x1
I: debmake (version: 5.1.2)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-0.0] $ cd ..
I: Non-native Debian package pkg="debhello", ver="0.0", rev="1" method="dir_d...
I: already in the package-version form: "debhello-0.0"
I: [base_dir] $ ln -sf debhello-0.0.tar.xz debhello_0.0.orig.tar.xz
I: [base_dir] $ cd debhello-0.0
I: parsing option -b ""
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: build_type = make
I: ext_type = c 1 files
I: ext_type = md 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-0.0] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
I: creating debian/source/format from extra0source_format
I: creating debian/README.Debian from extra1_README.Debian
I: creating debian/README.source from extra1_README.source
I: creating debian/clean from extra1_clean
I: creating debian/dirs from extra1_dirs
I: creating debian/docs from extra1_docs
I: creating debian/examples from extra1_examples
I: creating debian/gbp.conf from extra1_gbp.conf
I: creating debian/links from extra1_links
I: creating debian/manpages from extra1_manpages
I: creating debian/salsa-ci.yml from extra1_salsa-ci.yml
I: creating debian/watch from extra1nn_watch
I: creating debian/tests/control from extra1tests_control
I: creating debian/upstream/metadata from extra1upstream_metadata
I: creating debian/patches/series from extra1patches_series
I: creating debian/install from extra1bin_install
I: [debhello-0.0] $ wrap-and-sort -ast
I: debian/* may have a blank line at the top.

Команда debmake создаёт все шаблонные файлы на основе опций командной строки. По-
скольку никакие опции не были переданы, команда debmake выбирает для вас разумные значе-
ния по умолчанию:

• Имя пакета с исходным кодом: debhello

• Версия основной ветки разработки: 0.0

• Имя двоичного пакета: debhello

• Номер редакции Debian: 1

• Тип пакета: bin (пакет с двоичными исполняемыми файлами формата ELF)

• The -x option: -x1 (without maintainer script supports for simplicity)

22

ГЛАВА 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES …

Замечание

Here, the debmake command is invoked with the -x1 option to keep this tutorial
simple. Use of default -x2 or more extensive -x3 option is highly recommended.

Проверим созданные шаблонные файлы.
Дерево исходного кода после простого выполнения debmake.

[debhello-0.0] $ cd ..
[base_dir] $ tree
.
+-- debhello-0.0
| +-- Makefile
| +-- README.md
| +-- debian
| | +-- README.Debian
| | +-- README.source
| | +-- changelog
| | +-- clean
| | +-- control
| | +-- copyright
| | +-- dirs
| | +-- docs
| | +-- examples
| | +-- gbp.conf
| | +-- install
| | +-- links
| | +-- manpages
| | +-- patches
| | | +-- series
| | +-- rules
| | +-- salsa-ci.yml
| | +-- source
| | | +-- format
| | +-- tests
| | | +-- control
| | +-- upstream
| | | +-- metadata
| | +-- watch
| +-- src
| +-- hello.c
+-- debhello-0.0.tar.xz
+-- debhello_0.0.orig.tar.xz -> debhello-0.0.tar.xz

8 directories, 25 files

Файл debian/rules является сборочным сценарием, предоставляемым сопровождающим па-
кета. Ниже приводится его шаблонный файл, созданный командой debmake.

debian/rules (шаблонный файл):

[base_dir] $ cd debhello-0.0
[debhello-0.0] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.

23

ГЛАВА 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES …

#
See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
Package maintainers to append CFLAGS
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
Package maintainers to append LDFLAGS
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1
#
With debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax
%:

dh $@

debmake generated override targets
Use "make prefix=/usr" (override prefix=/usr/local in Makefile)
#override_dh_auto_install:
dh_auto_install -- prefix=/usr

Do not install python .pyc .pyo if they exist
#override_dh_install:
dh_install --list-missing -X.pyc -X.pyo

Multiarch package requires library files to be installed to
/usr/lib/<triplet>/ . If the build system does not support
$(DEB_HOST_MULTIARCH), you may need to override some targets such as
dh_auto_configure or dh_auto_install to use $(DEB_HOST_MULTIARCH) .

По сути, это стандартный файл debian/rules с командой dh. (Для удобства настройки в нём
содержится несколько закомментированных строк.)

Файл debian/control предоставляет основные метаданные пакета Debian. Ниже приведён шаб-
лонный файл, созданный командой debmake.

debian/control (шаблонный файл):

[debhello-0.0] $ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.3

24

ГЛАВА 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES …

Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/<project_site>

Package: debhello
Section: unknown
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.
.
===== This comes from the unmodified template file =====
.
Please edit this template file (debian/control) and other package files
(debian/*) to make them meet all the requirements of the Debian Policy
before uploading this package to the Debian archive.
.
See
* https://www.debian.org/doc/manuals/developers-reference/best-pkging-pract...
* https://www.debian.org/doc/manuals/debmake-doc/ch05.en.html#control
.
The synopsis description at the top should be about 60 characters and
written as a phrase. No extra capital letters or a final period. No
articles b''—b'' "a", "an", or "the".
.
The package description for general-purpose applications should be
written for a less technical user. This means that we should avoid
jargon. GNOME or KDE is fine but GTK+ is probably not.
.
Use the canonical forms of words:
* Use X Window System, X11, or X; not X Windows, X-Windows, or X Window.
* Use GTK+, not GTK or gtk.
* Use GNOME, not Gnome.
* Use PostScript, not Postscript or postscript.

Внимание

If you leave «Section: unknown» in the template debian/control file unchanged,
the lintian error may cause the build to fail.

Since this is the ELF binary executable package, the debmake command sets «Architecture: any»
and «Multi-Arch: foreign». Also, it sets required substvar parameters as «Depends: ${shlibs:Depends},
${misc:Depends}». These are explained in «Глава 6».

Замечание

Please note this debian/control file uses the RFC-822 style as documented
in «5.2 Source package control files — debian/control» of the «Debian Policy
Manual». The use of the empty line and the leading space are significant.

The debian/copyright file provides the copyright summary data of the Debian package using the
licensecheck command.

25

https://www.debian.org/doc/debian-policy/ch-controlfields.html#source-package-control-files-debian-control

ГЛАВА 5. SIMPLE PACKAGING 5.7. ШАГ 3: ИЗМЕНЕНИЕ ШАБЛОННЫХ …

debian/copyright (шаблонный файл):
[debhello-0.0] $ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: FIXME
Upstream-Contact: FIXME
Source: FIXME
Disclaimer: Autogenerated by licensecheck

Files: ./Makefile
./README.md
./src/hello.c
Copyright: NONE
License: UNKNOWN
FIXME

5.7 Шаг 3: изменение шаблонных файлов
От сопровождающего требуется вручную внести некоторые изменения шаблонных файлов.

In order to install files as a part of the system files, the $(prefix) value of /usr/local in the Makefile
should be overridden to be /usr. This can be accommodated by the following the debian/rules file with
the override_dh_auto_install target setting «prefix=/usr».

debian/rules (версия сопровождающего):
[base_dir] $ cd debhello-0.0
[debhello-0.0] $ vim debian/rules
... hack, hack, hack, ...
[debhello-0.0] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

override_dh_auto_install:
dh_auto_install -- prefix=/usr

Экспортирование переменой окружения DH_VERBOSE в файле debian/rules, как это сделано
выше, приводит к тому, что инструмент debhelper создаёт более подробный отчёт о сборке.

Exporting DEB_BUILD_MAINT_OPTION as above sets the hardening options as described in the
«FEATURE AREAS/ENVIRONMENT» in dpkg-buildflags(1). 1

Exporting DEB_CFLAGS_MAINT_APPEND as above forces the C compiler to emit all the warnings.
Exporting DEB_LDFLAGS_MAINT_APPEND as above forces the linker to link only when the library

is actually needed. 2
The dh_auto_install command for the Makefile based build system essentially runs «$(MAKE)

install DESTDIR=debian/debhello». The creation of this override_dh_auto_install target changes its
behavior to «$(MAKE) install DESTDIR=debian/debhello prefix=/usr».

Here are the maintainer versions of the debian/control and debian/copyright files.
debian/control (версия сопровождающего):

[debhello-0.0] $ vim debian/control
... hack, hack, hack, ...
[debhello-0.0] $ cat debian/control
Source: debhello

1This is a cliché to force a read-only relocation link for the hardening and to prevent the lintian warning «W: debhello:
hardening-no-relro usr/bin/hello». This is not really needed for this example but should be harmless. The lintian tool seems
to produce a false positive warning for this case which has no linked library.

2This is a cliché to prevent overlinking for the complex library dependency case such as Gnome programs. This is not really
needed for this simple example but should be harmless.

26

ГЛАВА 5. SIMPLE PACKAGING 5.7. ШАГ 3: ИЗМЕНЕНИЕ ШАБЛОННЫХ …

Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.3
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

debian/copyright (версия сопровождающего):

[debhello-0.0] $ vim debian/copyright
... hack, hack, hack, ...
[debhello-0.0] $ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Let’s remove unused template files and edit remaining template files:

• debian/README.source

• debian/patches/series (No upstream patch)

• clean

• dirs

• install

• links

Шаблонные файлы в debian/. (v=0.0):

27

ГЛАВА 5. SIMPLE PACKAGING 5.8. STEP 4: BUILDING PACKAGE WITH …

[debhello-0.0] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-0.0] $ rm -f debian/README.source debian/source/*.ex
[debhello-0.0] $ rm -rf debian/patches
[debhello-0.0] $ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- docs
+-- examples
+-- gbp.conf
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 14 files

Подсказка

Configuration files used by the dh_* commands from the debhelper package
usually treat # as the start of a comment line.

5.8 Step 4: Building package with debuild
В данном дереве исходного кода вы можете создать неродной пакет Debian с помощью коман-
ды debuild или эквивалентных ей команд (см. «Раздел 5.4»). Вывод команды очень подробен,
выполняемые действия объясняются в нём следующим образом.

Building package with debuild

[base_dir] $ cd debhello-0.0
[debhello-0.0] $ debuild
dpkg-buildpackage -us -uc -ui -i
dpkg-buildpackage: info: source package debhello
dpkg-buildpackage: info: source version 0.0-1
dpkg-buildpackage: info: source distribution unstable
dpkg-buildpackage: info: source changed by Osamu Aoki <osamu@debian.org>
dpkg-source -i --before-build .
dpkg-buildpackage: info: host architecture amd64
debian/rules clean
dh clean

dh_auto_clean
make -j12 distclean

...
debian/rules binary
dh binary

dh_update_autotools_config
dh_autoreconf
dh_auto_configure
dh_auto_build

28

ГЛАВА 5. SIMPLE PACKAGING 5.8. STEP 4: BUILDING PACKAGE WITH …

make -j12 INSTALL="install --strip-program=true"
make[1]: Entering directory '/path/to/base_dir/debhello-0.0'
CFLAGS=-g -O2 -Werror=implicit-function-declaration
...
Finished running lintian.

You can verify that CFLAGS is updated properly with -Wall and -pedantic by the DEB_CFLAGS_MAINT_APPEND
variable.

The manpage should be added to the package as reported by the lintian package, as shown in later
examples (see «Глава 15»). Let’s move on for now.

Проверим результат сборки.
Файлы debhello версии 0.0, созданные с помощью команды debuild:

[debhello-0.0] $ cd ..
[base_dir] $ tree -FL 1
./
+-- debhello-0.0/
+-- debhello-0.0.tar.xz
+-- debhello-dbgsym_0.0-1_amd64.deb
+-- debhello_0.0-1.debian.tar.xz
+-- debhello_0.0-1.dsc
+-- debhello_0.0-1_amd64.build
+-- debhello_0.0-1_amd64.buildinfo
+-- debhello_0.0-1_amd64.changes
+-- debhello_0.0-1_amd64.deb
+-- debhello_0.0.orig.tar.xz -> debhello-0.0.tar.xz

2 directories, 9 files

Вы видите все созданные файлы.

• The debhello_0.0.orig.tar.xz is a symlink to the upstream tarball.

• debhello_0.0-1.debian.tar.xz содержит файлы, созданные сопровождающим.

• debhello_0.0-1.dsc представляет собой файл с метаданными для пакета Debian с исходным
кодом.

• debhello_0.0-1_amd64.deb — двоичный пакет Debian.

• The debhello-dbgsym_0.0-1_amd64.deb is the Debian debug symbol binary package. See «Раз-
дел 11.21».

• The debhello_0.0-1_amd64.build file is the build log file.

• The debhello_0.0-1_amd64.buildinfo file is the meta data file generated by dpkg-genbuildinfo(1).

• debhello_0.0-1_amd64.changes — файл с метаданными для двоичного пакета Debian.

debhello_0.0-1.debian.tar.xz содержит изменения Debian, внесённые в исходный код основной
ветки разработки. Содержимое этого файла приведено ниже.

Содержимое архива debhello_0.0-1.debian.tar.xz:

[base_dir] $ tar --xz -tf debhello-0.0.tar.xz
debhello-0.0/
debhello-0.0/src/
debhello-0.0/src/hello.c
debhello-0.0/Makefile
debhello-0.0/README.md
[base_dir] $ tar --xz -tf debhello_0.0-1.debian.tar.xz
debian/
debian/README.Debian
debian/changelog
debian/control
debian/copyright
debian/docs

29

ГЛАВА 5. SIMPLE PACKAGING 5.8. STEP 4: BUILDING PACKAGE WITH …

debian/examples
debian/gbp.conf
debian/manpages
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

The debhello_0.0-1_amd64.deb contains the binary files to be installed to the target system.
The debhello-dbgsym_0.0-1_amd64.deb contains the debug symbol files to be installed to the

target system.
The binary package contents of all binary packages:

[base_dir] $ dpkg -c debhello-dbgsym_0.0-1_amd64.deb
drwxr-xr-x root/root/
drwxr-xr-x root/root/usr/
drwxr-xr-x root/root/usr/lib/
drwxr-xr-x root/root/usr/lib/debug/
drwxr-xr-x root/root/usr/lib/debug/.build-id/
drwxr-xr-x root/root/usr/lib/debug/.build-id/00/
-rw-r--r-- root/root/usr/lib/debug/.build-id/00/d21e230186d135c41c9540...
drwxr-xr-x root/root/usr/share/
drwxr-xr-x root/root/usr/share/doc/
lrwxrwxrwx root/root/usr/share/doc/debhello-dbgsym -> debhello
[base_dir] $ dpkg -c debhello_0.0-1_amd64.deb
drwxr-xr-x root/root/
drwxr-xr-x root/root/usr/
drwxr-xr-x root/root/usr/bin/
-rwxr-xr-x root/root/usr/bin/hello
drwxr-xr-x root/root/usr/share/
drwxr-xr-x root/root/usr/share/doc/
drwxr-xr-x root/root/usr/share/doc/debhello/
-rw-r--r-- root/root/usr/share/doc/debhello/README.Debian
-rw-r--r-- root/root/usr/share/doc/debhello/changelog.Debian.gz
-rw-r--r-- root/root/usr/share/doc/debhello/copyright

The generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=0.0):

[debhello-0.0] $ dpkg -f debhello-dbgsym_0.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 0.0-1)
[debhello-0.0] $ dpkg -f debhello_0.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.34)

Предостережение

Many more details need to be addressed before uploading the package to the
Debian archive.

30

ГЛАВА 5. SIMPLE PACKAGING 5.9. STEP 3 (ALTERNATIVES): …

Замечание

Если вы пропустили ручную настройку автоматически созданных командой
debmake файлов настройки, то у созданного двоичного пакета может отсут-
ствовать понятное другим описание пакета, а также пакет может несоответ-
ствовать некоторым требованиям политики. Такой сырой пакет вполне хо-
рошо работает, если передать его команде dpkg, и может оказаться вполне
достаточным для его локального развёртывания.

5.9 Step 3 (alternatives): Modification to the upstream source
The above example did not touch the upstream source to make the proper Debian package. An alternative
approach as the maintainer is to modify files in the upstream source. For example, Makefile may be
modified to set the $(prefix) value to /usr.

Замечание

The above «Раздел 5.7» using the debian/rules file is the better approach for
packaging for this example. But let’s continue on with this alternative approaches
as a leaning experience.

In the following, let’s consider 3 simple variants of this alternative approach to generate debian/patches/*
files representing modifications to the upstream source in the Debian source format «3.0 (quilt)». These
substitute «Раздел 5.7» in the above step-by-step example:

• «Раздел 5.10»

• «Раздел 5.11»

• «Раздел 5.12»

Please note the debian/rules file used for these examples doesn’t have the override_dh_auto_install
target as follows:

debian/rules (альтернативная версия сопровождающего):

[base_dir] $ cd debhello-0.0
[debhello-0.0] $ vim debian/rules
... hack, hack, hack, ...
[debhello-0.0] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

5.10 Patch by «diff -u» approach
Here, the patch file 000-prefix-usr.patch is created using the diff command.

Patch by diff -u

[base_dir] $ cp -a debhello-0.0 debhello-0.0.orig
[debhello-0.0] $ vim debhello-0.0/Makefile
... hack, hack, hack, ...

31

ГЛАВА 5. SIMPLE PACKAGING 5.11. PATCH BY DQUILT APPROACH

[base_dir] $ diff -Nru debhello-0.0.orig debhello-0.0 >000-prefix-usr.patch
[base_dir] $ cat 000-prefix-usr.patch
diff -Nru debhello-0.0.orig/Makefile debhello-0.0/Makefile
--- debhello-0.0.orig/Makefile 2026-02-03 08:55:45.275309668 +0000
+++ debhello-0.0/Makefile 2026-02-03 08:55:45.354384730 +0000
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

[base_dir] $ rm -rf debhello-0.0
[base_dir] $ mv -f debhello-0.0.orig debhello-0.0

Please note that the upstream source tree is restored to the original state after generating a patch
file 000-prefix-usr.patch.

This 000-prefix-usr.patch is edited to be DEP-3 conforming and moved to the right location as below.
000-prefix-usr.patch (DEP-3):

[debhello-0.0] $ echo '000-prefix-usr.patch' >debian/patches/series
[debhello-0.0] $ vim ../000-prefix-usr.patch
... hack, hack, hack, ...
[debhello-0.0] $ mv -f ../000-prefix-usr.patch debian/patches/000-prefix-usr....
[debhello-0.0] $ cat debian/patches/000-prefix-usr.patch
From: Osamu Aoki <osamu@debian.org>
Description: set prefix=/usr patch
diff -Nru debhello-0.0.orig/Makefile debhello-0.0/Makefile
--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

Замечание

When generating the Debian source package by dpkg-source via dpkg-
buildpackage in the following step of «Раздел 5.8», the dpkg-source command
assumes that no patch was applied to the upstream source, since the
.pc/applied-patches is missing.

5.11 Patch by dquilt approach
Here, the patch file 000-prefix-usr.patch is created using the dquilt command.

dquilt is a simple wrapper of the quilt program. The syntax and function of the dquilt command
is the same as the quilt(1) command, except for the fact that the generated patch is stored in the
debian/patches/ directory.

Patch by dquilt

[debhello-0.0] $ dquilt new 000-prefix-usr.patch
Patch debian/patches/000-prefix-usr.patch is now on top
[debhello-0.0] $ dquilt add Makefile
File Makefile added to patch debian/patches/000-prefix-usr.patch
... hack, hack, hack, ...
[debhello-0.0] $ head -1 Makefile
prefix = /usr
[debhello-0.0] $ dquilt refresh

32

https://dep-team.pages.debian.net/deps/dep3/

ГЛАВА 5. SIMPLE PACKAGING 5.11. PATCH BY DQUILT APPROACH

Refreshed patch debian/patches/000-prefix-usr.patch
[debhello-0.0] $ dquilt header -e --dep3
... edit the DEP-3 patch header with editor
[debhello-0.0] $ tree -a
.
+-- .pc
| +-- .quilt_patches
| +-- .quilt_series
| +-- .version
| +-- 000-prefix-usr.patch
| | +-- .timestamp
| | +-- Makefile
| +-- applied-patches
+-- Makefile
+-- README.md
+-- debian
| +-- README.Debian
| +-- README.source
| +-- changelog
| +-- clean
| +-- control
| +-- copyright
| +-- dirs
| +-- docs
| +-- examples
| +-- gbp.conf
| +-- install
| +-- links
| +-- manpages
| +-- patches
| | +-- 000-prefix-usr.patch
| | +-- series
| +-- rules
| +-- salsa-ci.yml
| +-- source
| | +-- format
| +-- tests
| | +-- control
| +-- upstream
| | +-- metadata
| +-- watch
+-- src

+-- hello.c

9 directories, 30 files
[debhello-0.0] $ cat debian/patches/series
000-prefix-usr.patch
[debhello-0.0] $ cat debian/patches/000-prefix-usr.patch
Description: set prefix=/usr patch
Author: Osamu Aoki <osamu@debian.org>
Index: debhello-0.0/Makefile
===
--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

Here, Makefile in the upstream source tree doesn’t need to be restored to the original state for the
packaging.

33

ГЛАВА 5. SIMPLE PACKAGING 5.12. PATCH BY «DPKG-SOURCE …

Замечание

When generating the Debian source package by dpkg-source via dpkg-
buildpackage in the following step of «Раздел 5.8», the dpkg-source command
assumes that patches were applied to the upstream source, since the
.pc/applied-patches exists.

The upstream source tree can be restored to the original state for the packaging.
The upstream source tree (restored):

[debhello-0.0] $ dquilt pop -a
Removing patch debian/patches/000-prefix-usr.patch
Restoring Makefile

No patches applied
[debhello-0.0] $ head -1 Makefile
prefix = /usr/local
[debhello-0.0] $ tree -a .pc
.pc
+-- .quilt_patches
+-- .quilt_series
+-- .version

1 directory, 3 files

Here, Makefile is restored and the .pc/applied-patches is missing.

5.12 Patch by «dpkg-source --auto-commit» approach
Here, the patch file isn’t created in this step but the source files are setup to create debian/patches/*
files in the following step of «Раздел 5.8».

For this, debmake must be invoked without -x1 option to generate normal template files using default
-x2 option, instead.

The output from the debmake command

[base_dir] $ cd debhello-0.0
[debhello-0.0] $ debmake
I: debmake (version: 5.1.2)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
...

Отредактируем исходный код основной ветки разработки.
Modified Makefile

[debhello-0.0] $ vim Makefile
... hack, hack, hack, ...
[debhello-0.0] $ head -n1 Makefile
prefix = /usr

Let’s edit debian/source/options:
debian/source/options for auto-commit

[debhello-0.0] $ mv debian/source/options.ex debian/source/options
[debhello-0.0] $ vim debian/source/options
... hack, hack, hack, ...
[debhello-0.0] $ cat debian/source/options
== Patch applied strategy (merge) ==
#
The source outside of debian/ directory is modified by maintainer and
different from the upstream one:
* Workflow using dpkg-source commit (commit all to VCS after dpkg-source ...
https://www.debian.org/doc/manuals/debmake-doc/ch04.en.html#dpkg-sour...

34

ГЛАВА 5. SIMPLE PACKAGING 5.12. PATCH BY «DPKG-SOURCE …

* Workflow described in dgit-maint-merge(7)
#
single-debian-patch
auto-commit

Let’s edit debian/source/patch-header:
debian/source/patch-header for auto-commit

[debhello-0.0] $ mv debian/source/patch-header.ex debian/source/patch-header
[debhello-0.0] $ vim debian/source/patch-header
... hack, hack, hack, ...
[debhello-0.0] $ cat debian/source/patch-header
Description: debian-changes
Author: Osamu Aoki <osamu@debian.org>

Let’s remove debian/patches/* files and other unused template files.
Remove unused template files

[debhello-0.0] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-0.0] $ rm -f debian/README.source debian/*.ex debian/source/*.ex
[debhello-0.0] $ rm -rf debian/patches
[debhello-0.0] $ tree debian
debian
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- docs
+-- examples
+-- gbp.conf
+-- manpages
+-- rules
+-- salsa-ci.yml
+-- source
| +-- format
| +-- options
| +-- patch-header
+-- tests
| +-- control
+-- upstream
| +-- metadata
+-- watch

4 directories, 16 files

There are no debian/patches/* files at the end of this step.

Замечание

When generating the Debian source package by dpkg-source via dpkg-
buildpackage in the following step of «Раздел 5.8», the dpkg-source command
uses options specified in debian/source/options to auto-commit modification
applied to the upstream source as patches/debian-changes.

Let’s inspect the Debian source package generated after the following «Раздел 5.8» step and extracting
files from debhello-0.0.debian.tar.xz.

Inspect debhello-0.0.debian.tar.xz after debuild

[base_dir] $ tar --xz -xvf debhello_0.0-1.debian.tar.xz
debian/
debian/README.Debian
debian/changelog
debian/control

35

ГЛАВА 5. SIMPLE PACKAGING 5.12. PATCH BY «DPKG-SOURCE …

debian/copyright
debian/docs
debian/examples
debian/gbp.conf
debian/manpages
debian/patches/
debian/patches/debian-changes
debian/patches/series
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/source/options
debian/source/patch-header
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

Let’s check generated debian/patches/* files.
Inspect debian/patches/* after debuild

[base_dir] $ cat debian/patches/series
debian-changes
[base_dir] $ cat debian/patches/debian-changes
Description: debian-changes
Author: Osamu Aoki <osamu@debian.org>

--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ -1,4 +1,4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

The Debian source package debhello-0.0.debian.tar.xz is confirmed to be generated properly with
debian/patches/* files for the Debian modification.

36

Глава 6

Basics for packaging

Here, a broad overview is presented without using VCS operations for the basic rules of Debian packaging
focusing on the non-native Debian package in the «3.0 (quilt)» format.

Замечание

Для ясности в дайльнейшем были умышленно опущены некоторые де-
тали. Ознакомьтесь со страницами руководства dpkg-source(1), dpkg-
buildpackage(1), dpkg(1), dpkg-deb(1), deb(5) и др.

Пакет Debian с исходным кодом является набором входных файлов, используемых для сборки
двоичного пакета Debian, и не представляет собой только один файл.

The Debian binary package is a special archive file which holds a set of installable binary data with
its associated information.

Один пакет Debian с исходным кодом может использоваться для создания нескольких двоичных
пакетов Debian, определяемых в файле debian/control.

The non-native Debian package in the Debian source format «3.0 (quilt)» is the most normal Debian
source package format.

Замечание

Сущесвтует множество обёрточных сценариев. Используйте их для упроще-
ния вашей работы, но обязательно разберитесь с основами их внутреннего
устройства.

6.1 Работа по созданию пакета
The Debian packaging workflow to create a Debian binary package involves generating several specifically
named files (see «Раздел 6.3») as defined in the «Debian Policy Manual». This workflow can be summarized
in 10 steps with some over simplification as follows.

1. The upstream tarball is downloaded as the package-version.tar.xz file.

2. Этот архив распаковывается, создаётся множество файлов в каталоге пакет-версия/.

3. The upstream tarball is copied (or symlinked) to the particular filename packagename_version.orig.tar.xz.

• символ, разделяющий пакет и версию, заменяется с - (дефиса) на _ (подчёркивание)
• к расширению добавляется .orig.

4. К исходному коду основной ветки разработки в каталог пакет-версия/debian/ добавляются
файлы спецификации пакета Debian.

37

ГЛАВА 6. BASICS FOR PACKAGING 6.1. РАБОТА ПО СОЗДАНИЮ ПАКЕТА

• Обязательные файлы спецификации в каталоге debian/*:
debian/rules Исполняемый сценарий для сборки пакета Debian (см. «Раздел 6.5»)
debian/control The package configuration file containing the source package name, the

source build dependencies, the binary package name, the binary dependencies, etc. (see
«Раздел 6.6»)

debian/changelog Файл с историей пакета Debian, определяющий в первой строке вер-
сию пакета из основной ветки разработки и номер редакции Debian (см. «Раздел 6.7»)

debian/copyright Информация об авторских правах и лицензии (см. «Раздел 6.8»)
debian/source/format This indicates the desired format to dpkg-source(1) (see Debian wiki:

«DebSrc3.0»)
• Необязательные файлы спецификации в каталоге debian/* (see «Раздел 6.14»):
• These files must be manually edited to their perfection according to the «Debian Policy Manual»

and «Debian Developer’s Reference».

5. The dpkg-buildpackage command (usually from its wrapper debuild or sbuild) is invoked in
the package-version/ directory to make the Debian source and binary packages by invoking the
debian/rules script.

• The current directory is set as: «CURDIR=/path/to/package-version/»
• Create the Debian source package in the Debian source format «3.0 (quilt)» using dpkg-

source(1)
– package_version.orig.tar.xz (copy or symlink of package-version.tar.xz)
– package_version-revision.debian.tar.xz (tarball of debian/ found in package-version/)
– package_version-revision.dsc

• Build the source using «debian/rules build» into $(DESTDIR)
– «DESTDIR=debian/binarypackage/» for single binary package 1
– «DESTDIR=debian/tmp/» for multi binary package

• Создание двоичного пакета Debian с помощью dpkg-deb(1), dpkg-genbuildinfo(1) и dpkg-
genchanges(1).

– двоичныйпакет_версия-редакция_архитектура.deb
– … (There may be multiple Debian binary package files.)
– пакет_версия-редакция_архитектура.changes
– package_version-revision_arch.buildinfo

6. Проверка качества пакета Debian с помощью команды lintian. (рекомендуется)

• Follow the rejection guidelines from ftp-master.
– «REJECT-FAQ»
– «Лист проверок для пакетов из NEW»
– «Автоматические отклонения пакетов Lintian» («список тегов lintian»)

7. Test the goodness of the generated Debian binary package manually by installing it and running
its programs.

8. After confirming the goodness, prepare files for the normal source-only upload to the Debian
archive.

9. Sign the Debian package file with the debsign command using your private GPG key.

• Use «debsign package_version-revision_source.changes» (source-only upload situation)
• Use «debsign package_version-revision_arch.changes» (source+binary upload situation)

10. Upload the set of the Debian package files with the dput command to the Debian archive.

• Use «dput package_version-revision_source.changes» (source-only upload)

1This is the default up to debhelper v13. At debhelper v14, it warns the default change. After debhelper v15, it will change
the default to DESTDIR=debian/tmp/ .

38

https://wiki.debian.org/Projects/DebSrc3.0
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/manuals/developers-reference/
https://ftp-master.debian.org/
https://ftp-master.debian.org/REJECT-FAQ.html
https://ftp-master.debian.org/NEW-checklist.html
https://ftp-master.debian.org/#lintianrejects
https://ftp-master.debian.org/static/lintian.tags

ГЛАВА 6. BASICS FOR PACKAGING 6.2. DEBHELPER PACKAGE

• Use «dput package_version-revision_arch.changes» (source+binary upload)

Test building and confirming of the binary package goodness as above is the moral obligation as
a diligent Debian developer but there is no physical barrier for people to skip such operations at this
moment for the source-only upload.

For the upstream tarball, the debmake command helps up to the step 4 in the above workflow. For the
upstream working tree package/ checked out, e.g., by «git clone https://github.com/upstreamname/package.git»
without any upstream tarball, the debmake command invoked in it helps up to step 4, too. The debmake
command does not overwrite any existing configuration files.

Теперь замените каждую часть имени файла.

• часть пакет на имя пакета Debian с исходным кодом

• часть двоичныйпакет на имя двоичного пакета Debian

• часть версия на версию основной ветки разработки

• часть редакция на номер редации Debian

• the arch part with the package architecture (e.g., amd64)

The current Debian practice for uploading the normal Debian package is:

• Use the source-only upload if all generated binary packages exist in the Debian sid archive. This
is usual case.

• Use the source+binary upload if any one of generated packages is missing in the Debian sid
archive. (This involves manually handled NEW process by the archive management team.)

See also «Source-only uploads».

Подсказка

Использется множество различных стратегий по управлению заплатами и
использованию систем управления версиями. Вам не следует использовать
все из них.

Подсказка

There is very extensive documentation in «Chapter 6. Best Packaging Practices»
in the «Debian Developer’s Reference». Please read it.

6.2 debhelper package
Although a Debian package can be made by writing a debian/rules script without using the debhelper
package, it is impractical to do so. There are too many modern «Debian Policy» required features to be
addressed, such as application of the proper file permissions, use of the proper architecture dependent
library installation path, insertion of the installation hook scripts, generation of the debug symbol package,
generation of package dependency information, generation of the package information files, application
of the proper timestamp for reproducible build, etc.

Debhelper package provides a set of useful scripts in order to simplify Debian’s packaging workflow
and reduce the burden of package maintainers. When properly used, they will help packagers handle
and implement «Debian Policy» required features automatically.

Процедура создания пакета Debian в современном стиле может быть организована в виде на-
бора простых модульных действий:

39

https://github.com/
https://wiki.debian.org/SourceOnlyUpload
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/

ГЛАВА 6. BASICS FOR PACKAGING 6.3. ИМЯ ПАКЕТА И ВЕРСИЯ

• using the dh command to invoke many utility scripts automatically from the debhelper package,
and

• настройка их поведения с помощью декларативных файлов настройки в каталоге debian/.

You should almost always use debhelper as your package’s build dependency. This document also
assumes that you are using a fairly contemporary version of debhelper to handle packaging works in
the following contents.

Замечание

For debhelper «compat >= 9», the dh command exports compiler flags
(CFLAGS, CXXFLAGS, FFLAGS, CPPFLAGS and LDFLAGS) with values as
returned by dpkg-buildflags if they are not set previously. (The dh command
calls set_buildflags defined in the Debian::Debhelper::Dh_Lib module.)

Замечание

debhelper(1) changes its behavior with time. Please make sure to read
debhelper-compat-upgrade-checklist(7) to understand the situation.

6.3 Имя пакета и версия
If the upstream source comes as hello-0.9.12.tar.xz, you can take hello as the upstream source package
name and 0.9.12 as the upstream version.

There are some limitations for what characters may be used as a part of the Debian package. The
most notable limitation is the prohibition of uppercase letters in the package name. Here is a summary
as a set of regular expressions:

• Upstream package name (-p): [-+.a-z0-9]{2,}

• Binary package name (-b): [-+.a-z0-9]{2,}

• Upstream version (-u): [0-9][-+.:~a-z0-9A-Z]*

• Debian revision (-r): [0-9][+.~a-z0-9A-Z]*

See the exact definition in «Chapter 5 - Control files and their fields» in the «Debian Policy Manual».
Вам следует соответствующим образом изменить имя пакета и версию основной ветки разра-

ботки для создания пакета Debian.
Для того, чтобы информация об имени пакета и номере версии эффективно обрабатывались

такими популярными инструментами как команда aptitude, рекомендуется, чтобы длина имени
пакета была равна 30 символам или была меньше; а общая длина версии и редакции была равна
14 символам или меньше. 2

Для того, чтобы не возникали конфликты, видимое пользователю имя двоичного пакета не сле-
дует выбирать из числа распространённых слов.

If upstream does not use a normal versioning scheme such as 2.30.32 but uses some kind of date
such as 11Apr29, a random codename string, or a VCS hash value as part of the version, make sure to
remove them from the upstream version. Such information can be recorded in the debian/changelog
file. If you need to invent a version string, use the YYYYMMDD format such as 20110429 as upstream
version. This ensures that the dpkg command interprets later versions correctly as upgrades. If you need
to ensure a smooth transition to a normal version scheme such as 0.1 in the future, use the 0~YYMMDD
format such as 0~110429 as upstream version, instead.

Строки версий можно сравнивать друг с другом с помощью команды dpkg следующим образом.

2Для более чем 90% пакетов длина имени пакета равна 24 символам или меньше этого числа; длина версии основной
ветки равна 10 символам или меньше, а длина номера редакции Debian равна 3 символам или меньше.

40

https://www.debian.org/doc/debian-policy/#document-ch-controlfields

ГЛАВА 6. BASICS FOR PACKAGING 6.4. РОДНОЙ ПАКЕТ DEBIAN

[~] $ dpkg --compare-versions ver1 op ver2

Правило сравнения версий может быть представлены следующим образом:

• Строки сравниваются в порядке с начала до конца.

• Буквы больше чисел.

• Числа сравниваются как целые числа.

• Буквы сравниваются в порядке таблицы кодов ASCII.

Также имеются специальные правила для символов точки (.), плюса (+) и тильды (~). Они по-
казаны ниже.

0.0 < 0.5 < 0.10 < 0.99 < 1 < 1.0~rc1 < 1.0 < 1.0+b1 < 1.0+nmu1 < 1.1 < 2.0

One tricky case occurs when the upstream releases hello-0.9.12-ReleaseCandidate-99.tar.xz as
the pre-release of hello-0.9.12.tar.xz. You can ensure the Debian package upgrade to work properly by
renaming the upstream source to hello-0.9.12~rc99.tar.xz.

6.4 Родной пакет Debian
The non-native Debian package in the Debian source format «3.0 (quilt)» is the most normal Debian
source package format. The debian/source/format file should have «3.0 (quilt)» in it as described in
dpkg-source(1). The above workflow and the following packaging examples always use this format.

A native Debian package is the rare Debian binary package format. It may be used only when the
package is useful and valuable only for Debian. Thus, its use is generally discouraged.

Предостережение

A native Debian package is often accidentally built when its upstream tarball
is not accessible from the dpkg-buildpackage command with its correct name
package_version.orig.tar.xz . This is a typical newbie mistake caused by making
a symlink name with «-» instead of the correct one with «_».

A native Debian package has no separation between the upstream code and the Debian changes
and consists only of the following:

• package_version.tar.xz (copy or symlink of package-version.tar.xz with debian/* files.)

• package_version.dsc

If you need to create a native Debian package, create it in the Debian source format «3.0 (native)»
using dpkg-source(1).

Подсказка

There is no need to create the tarball in advance if the native Debian package
format is used. The debian/source/format file should have «3.0 (native)» in it
as described in dpkg-source(1) and The debian/source/format file should have
the version without the Debian revision (1.0 instead of 1.0-1). Then, the tarball
containing is generated when «dpkg-source -b» is invoked in the source tree.

41

ГЛАВА 6. BASICS FOR PACKAGING 6.5. DEBIAN/RULES FILE

6.5 debian/rules file
The debian/rules file is the executable script which re-targets the upstream build system to install files
in the $(DESTDIR) and creates the archive file of the generated files as the deb file. The deb file is used
for the binary distribution and installed to the system using the dpkg command.

The Debian policy compliant debian/rules file supporting all the required targets can be written as
simple as 3:

Простой файл debian/rules:

#!/usr/bin/make -f
#export DH_VERBOSE = 1

%:
dh $@

The dh command functions as the sequencer to call all required «dh target» commands at the right
moment. ⁴

• dh clean : вычищет файлы в дереве исходного кода.

• dh build : сборка дерева исходного кода

• dh build-arch : сборка зависящих от архитектуры пакетов из дерева исходного кода

• dh build-indep : сборка независящих от архитектуры пакетов из дерева исходного кода

• dh install : установка двоичных файлов в $(DESTDIR)

• dh install-arch : установка двоичных файлов в $(DESTDIR) для зависящих от архитектуры
пакетов

• dh install-indep : установка двоичных файлов в $(DESTDIR) для независящих от архитектуры
пакетов

• dh binary : создание файла deb

• dh binary-arch : создание файла deb для зависящих от архитектуры пакетов

• dh binary-indep : создание файла deb для независящих от архитектуры пакетов

Here, $(DESTDIR) path depends on the build type.

• «DESTDIR=debian/binarypackage/» for single binary package ⁵

• «DESTDIR=debian/tmp/» for multi binary package

See «Раздел 10.2» and «Раздел 10.3» for customization.

Подсказка

Setting «export DH_VERBOSE = 1» outputs every command that modifies files
on the build system. Also it enables verbose build logs for some build systems.

3Команда debmake создаёт несколько более сложный файл debian/rules. Тем не менее, это базовая часть.
⁴This simplicity is available since version 7 of the debhelper package. This guide assumes the use of debhelper version 13

or newer.
⁵This is the default up to debhelper v13. At debhelper v14, it warns the default change. After debhelper v15, it will change

the default to DESTDIR=debian/tmp/ .

42

ГЛАВА 6. BASICS FOR PACKAGING 6.6. DEBIAN/CONTROL FILE

6.6 debian/control file
The debian/control file consists of blocks of metadata separated by blank lines. Each block of metadata
defines the following, in this order:

• метаданных пакета Debian с исходным кодом

• метаданные двоичных пакетов Debian

See «Chapter 5 - Control files and their fields» of the ”Debian Policy Manual” for the definition of each
metadata field.

Замечание

The debmake command sets the debian/control file with «Build-Depends:
debhelper-compat (= 13)» to set the debhelper compatibility level.

Подсказка

If an existing package has a debhelper compatibility level lower than 13, it’s
probably time to update its packaging.

6.7 debian/changelog file
The debian/changelog file records the Debian package history.

• Edit this file using the debchange command (alias dch).

• The first line defines the upstream package version and the Debian revision.

• Document changes in a specific, formal, and concise style.

– If Debian maintainer modification fixes reported bugs, add «Closes: #<bug_number>» to
close those bugs.

• Even if you’re uploading your package yourself, you must document all non-trivial user-visible
changes, such as:

– Security-related bug fixes.
– User interface changes.

• If you’re asking a sponsor to upload it, document changes more comprehensively, including all
packaging-related ones, to help with package review.

– The sponsor shouldn’t have to guess your reasoning behind package changes.
– Remember that the sponsor’s time is valuable.

After finishing your packaging and verifying its quality, execute the ”dch -r” command and save
the finalized debian/changelog file with the suite normally set to unstable. ⁶ If you’re packaging for
backports, security updates, LTS, etc., use the appropriate distribution names instead.

The debmake command creates the initial template file with the upstream package version and the
Debian revision. The distribution is set to UNRELEASED to prevent accidental uploads to the Debian
archive.

⁶If you’re using the vim editor, make sure to save this with the ”:wq” command.

43

https://www.debian.org/doc/debian-policy/ch-controlfields.html

ГЛАВА 6. BASICS FOR PACKAGING 6.8. DEBIAN/COPYRIGHT FILE

Подсказка

The date string used in the debian/changelog file can be manually generated
by the «LC_ALL=C date -R» command.

Подсказка

Use a debian/changelog entry with a version string like 1.0.1-1~rc1 when
experimenting. Later, consolidate such changelog entries into a single entry for
the official package.

The debian/changelog file is installed in the /usr/share/doc/binarypackage directory as changelog.Debian.gz
by the dh_installchangelogs command.

Журнал изменений основной ветки устанавливается в каталог /usr/share/doc/двоичныйпакет
под именем changelog.gz.

The upstream changelog is automatically found by the dh_installchangelogs using the case insensitive
match of its file name to changelog, changes, changelog.txt, changes.txt, history, history.txt, or
changelog.md and searched in the ./ doc/ or docs/ directories.

6.8 debian/copyright file
Debian takes copyright and license matters very seriously. The ”Debian Policy Manual” requires a summary
of these in the debian/copyright file of the package.

• «12.5. Copyright information»

• «2.3. Copyright considerations»

• «License information»

The debmake command creates the initial debian/copyright template file using the licensecheck(1)
command.

6.9 debian/patches/* files
As demonstrated in «Раздел 5.9», the debian/patches/ directory holds

• patch-file-name.patch files providing -p1 patches and

• the series file which defines how these patches are applied.

See how these files are used in:

• «Раздел 14.6» to build the Debian source package

• «Раздел 14.7» to extract source files from the Debian source package

Замечание

Header texts of these patches should conform to «DEP-3».

44

https://www.debian.org/doc/debian-policy/ch-docs.html#s-copyrightfile
https://www.debian.org/doc/debian-policy/ch-archive.html#s-pkgcopyright
https://www.debian.org/legal/licenses/
https://dep-team.pages.debian.net/deps/dep3/

ГЛАВА 6. BASICS FOR PACKAGING 6.10. DEBIAN/SOURCE/INCLUDE-BINARIES …

Замечание

If you want to use VCS tools such as git, gbp and dgit to create and manage
these patches after learning basics here, please refer to later in «Глава 12».

6.10 debian/source/include-binaries file
The «dpkg-source --commit» command functions like dquilt but has one advantage over the dquilt
command. The dquilt command can’t handle modified binary files since they are not representable in a
diff. Also, adding binary files under the debian/ directory is normally rejected by dpkg-source. By listing
these binary files in debian/source/include-binaries, the maintainer can include these binary files to
the Debian source package generated by dpkg-source.

6.11 debian/watch file

Замечание

This file is for use by the Debian non-native package.

The uscan(1) command downloads the latest upstream version using the debian/watch file. E.g.:
Basic debian/watch file:

version=4
https://ftp.gnu.org/gnu/hello/ @PACKAGE@@ANY_VERSION@@ARCHIVE_EXT@

The uscan command may verify the authenticity of the upstream tarball with optional configuration
(see «Раздел 6.12»).

See uscan(1), «Раздел 10.4», «Раздел 9.1», and «Раздел 12.7» for more.

6.12 debian/upstream/signing-key.asc file
Some packages are signed by a GPG key and their authenticity can be verified using their public GPG
key.

For example, «GNU hello» can be downloaded via HTTP from https://ftp.gnu.org/gnu/hello/ . There
are sets of files:

• hello-version.tar.xz (upstream source)

• hello-version.tar.xz.sig (detached signature)

Выберем самую последнюю версию.
Download the upstream tarball and its signature.

[base_dir] $ wget https://ftp.gnu.org/gnu/hello/hello-2.9.tar.xz
...
[base_dir] $ wget https://ftp.gnu.org/gnu/hello/hello-2.9.tar.xz.sig
...
[base_dir] $ gpg --verify hello-2.9.tar.xz.sig
gpg: Signature made Thu 10 Oct 2013 08:49:23 AM JST using DSA key ID 80EE4A00
gpg: Can't check signature: public key not found

45

https://www.gnu.org/software/hello/
https://ftp.gnu.org/gnu/hello/

ГЛАВА 6. BASICS FOR PACKAGING 6.13. DEBIAN/SALSA-CI.YML FILE

If you know the public GPG key of the upstream maintainer from the mailing list, use it as the
debian/upstream/signing-key.asc file. Otherwise, use the hkp keyserver and check it via your web
of trust.

Download public GPG key for the upstream

[base_dir] $ gpg --keyserver hkp://keys.gnupg.net --recv-key 80EE4A00
gpg: requesting key 80EE4A00 from hkp server keys.gnupg.net
gpg: key 80EE4A00: public key "Reuben Thomas <rrt@sc3d.org>" imported
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: imported: 1
[base_dir] $ gpg --verify hello-2.9.tar.xz.sig
gpg: Signature made Thu 10 Oct 2013 08:49:23 AM JST using DSA key ID 80EE4A00
gpg: Good signature from "Reuben Thomas <rrt@sc3d.org>"
...

Primary key fingerprint: 9297 8852 A62F A5E2 85B2 A174 6808 9F73 80EE 4A00

Подсказка

If your network environment blocks access to the HKP port 11371, use
«hkp://keyserver.ubuntu.com:80» instead.

After confirming the key ID 80EE4A00 is a trustworthy one, download its public key into the debian/upstream/signing-
key.asc file.

Set public GPG key to debian/upstream/signing-key.asc

[base_dir] $ gpg --armor --export 80EE4A00 >debian/upstream/signing-key.asc

With the above debian/upstream/signing-key.asc file and the following debian/watch file, the uscan
command can verify the authenticity of the upstream tarball after its download. E.g.:

Improved debian/watch file with GPG support:

version=4
opts="pgpsigurlmangle=s/$/.sig/" \
https://ftp.gnu.org/gnu/hello/ @PACKAGE@@ANY_VERSION@@ARCHIVE_EXT@

6.13 debian/salsa-ci.yml file
Install Salsa CI configuration file. See «Раздел 12.3».

6.14 Other debian/* files
В каталог debian/ можно добавить дополнительные файлы настройки. Большинство из них ис-
пользуются для управления командами dh_*, предоставляемыми пакетом debhelper, но также
имеются дополнительные файлы для команд dpkg-source, lintian и gbp.

Подсказка

Even an upstream source without its build system can be packaged just by using
these files. See «Раздел 15.2» as an example.

The alphabetical list of notable optional debian/binarypackage.* configuration files listed below provides
very powerful means to set the installation path of files. Please note:

46

https://en.wikipedia.org/wiki/Web_of_trust
https://en.wikipedia.org/wiki/Web_of_trust
https://salsa.debian.org/salsa-ci-team/pipeline

ГЛАВА 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

• The «-x[01234]» superscript notation that appears in the following list indicates the minimum value
for the debmake -x option that generates the associated template file. See «Раздел 17.4» or
debmake(1) for details.

• For a single binary package, the «binarypackage.» part of the filename in the list may be removed.

• For a multi binary package, a configuration file missing the «binarypackage» part of the filename
is applied to the first binary package listed in the debian/control.

• When there are many binary packages, their configurations can be specified independently by
prefixing their name to their configuration filenames such as «package-1.install», «package-2.install»,
etc.

• Некоторые шаблонные файлы настроек могут не быть созданы командой debmake. В таких
случаях вам следует создать их с помощью редактора.

• Some configuration template files generated by the debmake command with an extra .ex suffix
need to be activated by removing that suffix.

• The debmake -B command adds template files with an extra .ex suffix for all existing template files
without .ex and they need to be activated by removing that suffix.

• Неиспользуемые шаблонные файлы настроек, созданные командой debmake, следует уда-
лить.

• Копируйте шаблонные файлы настроек по необходимости в файлы с соответствующими
именами двоичных пакетов.

binarypackage.bug-control -x2 устанавливается как usr/share/bug/двоичныйпакет/control в
двоичныйпакет. См. «Раздел 10.11».

binarypackage.bug-presubj -x2 устанавливается как usr/share/bug/двоичныйпакет/presubj
в binarypackage. См. «Раздел 10.11».

binarypackage.bug-script -x2 устанавливается как usr/share/bug/двоичныйпакет или usr/share/bug/двоичныйпакет/script
в двоичныйпакет. См. «Раздел 10.11».

двоичныйпакет.bash-completion List bash completion scripts to be installed.
The bash-completion package is required for both build and user environments.
См. dh_bash-completion(1).

clean -x1 List files that should be removed but are not cleaned by the dh_auto_clean command.
См. dh_auto_clean(1) и dh_clean(1).

compat -x4 Set the debhelper compatibility level. (deprecated)
Use «Build-Depends: debhelper-compat (= 13)» in debian/control to specify the compatibility
level and remove debian/compat.
See «COMPATIBILITY LEVELS» in debhelper(7).

binarypackage.conffiles -x3 This optional file is installed into the DEBIAN directory within the
binary package while supplementing it with all the conffiles auto-detected by debhelper.
This file is primarily useful for using ”special” entries such as the remove-on-upgrade feature
from dpkg(1).
If the program you’re packaging requires every user to modify the configuration files in the
/etc directory, there are two popular ways to arrange for them not to be conffiles, keeping the
dpkg command happy and quiet.

– Создайте символьную ссылку в каталоге /etc, указывающую на файл в каталоге /var,
создаваемый сценариями сопровождающего.

– Создайте файл с помощью сценариев сопровождающего в каталоге /etc.
См. dh_installdeb(1).

двоичныйпакет.config Это config-сценарий debconf, используемый для того, чтобы за-
давать пользователю любые необходимые для настройки пакета вопросы. См. «Раз-
дел 11.22».

47

ГЛАВА 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

двоичныйпакет.cron.hourly -x3 Устанавливается в файл etc/cron/hourly/двоичныйпакет
в двоичныйпакет.
См. dh_installcron(1) и cron(8).

двоичныйпакет.cron.daily -x3 Устанавливается в файл etc/cron/daily/двоичныйпакет в дво-
ичныйпакет.
См. dh_installcron(1) и cron(8).

двоичныйпакет.cron.weekly -x3 Устанавливается в файл etc/cron/weekly/двоичныйпакет
в двоичныйпакет.
См. dh_installcron(1) и cron(8).

двоичныйпакет.cron.monthly -x3 Installed into the *etc/cron/monthly/*binarypackage file in binarypackage.
См. dh_installcron(1) и cron(8).

двоичныйпакет.cron.d -x3 Устанавливается в файл etc/cron.d/двоичныйпакет в двоичный-
пакет.
См. dh_installcron(1), cron(8) и crontab(5).

двоичныйпакет.default -x3 Если такой файл существует, то он устанавливается в etc/default/двоичныйпакет
в двоичныйпакет.
См. dh_installinit(1).

binarypackage.dirs -x1 Содержит список каталогов, которые должны быть созданы в двоич-
ныйпакет.
См. dh_installdirs(1).
Это это не требуется, поскольку все команды dh_install* автоматически создают необ-
ходимые каталоги. Используйте этот файл только в том случае, если у вас возникают
какие-либо затруднения.

binarypackage.doc-base -x1 Устанавливается как управляющий файл doc-base в двоичный-
пакет.
See dh_installdocs(1) and «Debian doc-base Manual (doc-base.html)» provided by the
doc-base package.

binarypackage.docs -x1 Создержит список файлов документации для их установки в двоич-
ныйпакет.
См. dh_installdocs(1).

binarypackage.emacsen-compat Устанавливается в usr/lib/emacsen-common/packages/compat/двоичныйпакет
в binarypackage.
См. dh_installemacsen(1).

двоичныйпакет.emacsen-install -x3 Устанавливается в usr/lib/emacsen-common/packages/install/двоичныйпакет
в двоичныйпакет.
См. dh_installemacsen(1).

двоичныйпакет.emacsen-remove -x3 Устанавливается в usr/lib/emacsen-common/packages/remove/двоичныйпакет
в двоичныйпакет.
См. dh_installemacsen(1).

двоичныйпакет.emacsen-startup -x3 Устанавливается в usr/lib/emacsen-common/packages/startup/двоичныйпакет
в двоичныйпакет.
См. dh_installemacsen(1).

binarypackage.examples -x1 Содержит список файлов или каталогов с примерами для их
установки в usr/share/doc/двоичныйпакет/examples/ в двоичныйпакет.
См. dh_installexamples(1).

gbp.conf -x1 Если этот файл существует, то он используется как файл настройки для коман-
ды gbp.
См. gbp.conf(5), gbp(1) и git-buildpackage(1).

binarypackage.info -x1 Содержит список info-файлов для их установки в двоичныйпакет.
См. dh_installinfo(1).

binarypackage.init -x4 Installed into etc/init.d/binarypackage in binarypackage. (deprecated)
См. dh_installinit(1).

48

file:///usr/share/doc/doc-base/doc-base.html/index.html

ГЛАВА 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

binarypackage.install -x1 Содержит список файлов, которые должны быть установлены, но
не устанавливаются командой dh_auto_install.
См. dh_install(1) и dh_auto_install(1).

binarypackage.links -x1 List pairs of source and destination files to be symlinked. Each pair should
be put on its own line, with the source and destination separated by whitespace.
См. dh_link(1).

binarypackage.lintian-overrides -x2 Устанавливается в usr/share/lintian/overrides/двоичныйпакет
в каталоге сборки пакета. Этот файл используется для блокировки ошибочных диагно-
стических процедур lintian.
См. dh_lintian(1), lintian(1) и «Руководство пользователя Lintian».

binarypackage.maintscript -x2 If this optional file exists, debhelper uses this as the template to
generate DEBIAN/binarypackage.{pre,post}{inst,rm} files within the binary package while
adding «-- ”$@”» to the dpkg-maintscript-helper(1) command.
See dh_installdeb(1) and «Chapter 6 - Package maintainer scripts and installation procedure»
in the «Debian Policy Manual».

manpage.* -x2 Команда debmake создаёт шаблонные файы страниц руководства. Переиме-
нуйте эти файлы соответствующим образом и обновите их содержимое.
Debian Policy requires that each program, utility, and function should have an associated
manual page included in the same package. Manual pages are written in nroff(1). If you are
new to making a manpage, use manpage.asciidoc -x3 or manpage.1 -x3 as the starting point.

binarypackage.manpages -x1 Содержит список страниц руководства для их установки.
См. dh_installman(1).

двоичныйпакет.menu (устарел, более не устанавливается) tech-ctte #741573 decided «Debian
should use .desktop files as appropriate».
Файл меню Debian устанавливается в usr/share/menu/двоичныйпакет в двоичныйпа-
кет.
Информацию о формате см. в menufile(5). См. dh_installmenu(1).

NEWS Устанавливается в usr/share/doc/двоичныйпакет/NEWS.Debian.
См. dh_installchangelogs(1).

patches/* Набор файлов заплат -p1, которые применяются к исходному коде основной ветки
до запуска процесса сборки исходного кода.
Команда debmake не создаёт файлы заплат.
См. dpkg-source(1), «Раздел 4.4» и «Раздел 5.9».

patches/series -x1 Последовательность применения файлов заплат patches/*.
binarypackage.preinst -x3, binarypackage.postinst -x3, binarypackage.prerm -x3, binarypackage.postrm -x3

If these optional files exist, the corresponding files are installed into the DEBIAN directory
within the binary package after enriched by debhelper. Otherwise, these files in the DEBIAN
directory within the binary package is generated by debhelper.
Whenever possible, simpler binarypackage.maintscript should be used instead.
See dh_installdeb(1) and «Chapter 6 - Package maintainer scripts and installation procedure»
in the «Debian Policy Manual».
See also debconf-devel(7) and «3.9.1 Prompting in maintainer scripts» in the «Debian Policy
Manual».

README.Debian -x1 Устанавливается в первый двоичный пакет, указанный в файле debian/control
как usr/share/doc/двоичныйпакет/README.Debian.
Этот файл содержит специальную информацию о пакете Debian.
См. dh_installdocs(1).

README.source -x1 Installed into the first binary package listed in the debian/control file as
usr/share/doc/binarypackage/README.source.
If running «dpkg-source -x» on a source package doesn’t produce the source of the package,
ready for editing, and allow one to make changes and run dpkg-buildpackage to produce a
modified package without taking any additional steps, creating this file is recommended.
See «Debian policy manual section 4.14».

49

https://lintian.debian.org/manual/index.html
https://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
https://bugs.debian.org/741573
https://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
https://www.debian.org/doc/debian-policy/ch-binary.html#prompting-in-maintainer-scripts
https://www.debian.org/doc/debian-policy/ch-source.html#source-package-handling-debian-readme-source

ГЛАВА 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

двоичныйпакет.service -x3 Если этот файл существует, то он устанавливается в lib/systemd/system/двоичныйпакет.service
в binarypackage.
См. dh_systemd_enable(1), dh_systemd_start(1) и dh_installinit(1).

source/format -x1 Формат пакета Debian.
– Use «3.0 (quilt)» to make this non-native package (popular)
– Use «3.0 (native)» to make this native package

See «SOURCE PACKAGE FORMATS» in dpkg-source(1).
source/lintian-overrides -x2 This file is not installed, but is scanned by the lintian command to

provide overrides for the source package.
См. dh_lintian(1) и lintian(1).

source/local-options and source/local-patch-header -x4

Замечание

These files are not compatible with the dgit workflow. See «Раз-
дел 12.14».

There is no reason to use these with the current version of dpkg-source(1).
source/options -x2 The dpkg-source command uses this content as its options. This is typically

used with «Раздел 12.13» and options may be:
– auto-commit
– single-debian-patch

This is included in the generated source package.
See «FILE FORMATS» in dpkg-source(1).

source/patch-header -x2 Свободная текстовая форма, размещаемая в верхней части авто-
матически созданной заплаты.
This is included in the generated source package and is meant to be committed to the ”ˋРаз-
дел 12.13ˋ.”.
See «FILE FORMATS» in dpkg-source(1).

binarypackage.symbols -x1 Файлы символов. Если эти файлы существуют, то они будут пе-
реданы для обработки и установки команде dpkg-gensymbols.
См. dh_makeshlibs(1) и «Раздел 11.16»..

binarypackage.templates Это файл шаблонов для debconf. Он используется для вывода
вопросов, необходимых для настройки пакета. См. «Раздел 11.22».

tests/control -x1 This is the RFC822-style test meta data file defined in DEP-8. See autopkgtest(1)
and «Раздел 11.4».

TODO Устанавливается в первый двоичный пакет, указанный в файле debian/control как
usr/share/doc/двоичныйпакет/TODO.Debian.
См. dh_installdocs(1).

двоичныйпакет.tmpfile -x3 Если этот файл существует, то он устанавливается в usr/lib/tmpfiles.d/двоичныйпакет.conf
в двоичныйпакет.
См. dh_systemd_enable(1), dh_systemd_start(1) и dh_installinit(1).

binarypackage.upstart -x4 If this exists, it is installed into etc/init/package.conf in the package
build directory. (deprecated)
См. dh_installinit(1).

upstream/metadata -x1 Per-package machine-readable metadata about upstream (DEP-12). See
«Upstream MEtadata GAthered with YAml (UMEGAYA)».

50

https://dep-team.pages.debian.net/deps/dep8/
https://dep-team.pages.debian.net/deps/dep12/
https://wiki.debian.org/UpstreamMetadata

Глава 7

Quality of packaging

The quality of Debian packaging can be improved by using testing tools.

• lintian(1)

• piuparts(1)

• autopkgtest(1)

If you follow «Глава 4», these are automatically executed. You are expected to fix all warnings.

7.1 Reformat debian/* files with wrap-and-sort
It is a good idea to reformat debian/* files consistently using the wrap-and-sort(1) command in devscripts
package.

Reformat debian/* files

[debhello-0.0] $ wrap-and-sort -vast

7.2 Validate debian/* files with debputy
The new debputy tool 1 includes subcommands to validate (and fix) most files in debian/*.

Check correctness of files in debian/*

[debhello-0.0] $ debputy lint --spellcheck

Format debian/control and debian/tests/control files

[debhello-0.0] $ debputy reformat --style black

Using the «debputy reformat» command obsoletes using «wrap-and-sort -vast».
The debputy tool also includes a language server. You can set up to get real-time feedback while

editing debian/* files with any modern editor supporting the Language Server Protocol.

1The main purpose of the debputy tool is to offer a new Debian package build paradigm. This new paradigm is beyond the
scope of this tutorial.

51

https://manpages.debian.org/unstable/dh-debputy/debputy.1.en.html
https://en.wikipedia.org/wiki/Language_Server_Protocol

Глава 8

Check packaging with cme

It is a good idea to check dpkg configuration files using the cme(1) command in cme package. This is
used by the DFSG, Licensing & New Packages Team.

Check correctness using in cme

[debhello-0.0] $ cme fix --verbose dpkg

52

https://dfsg-new-queue.debian.org/

Глава 9

Sanitization of the source

There are a few cases that require sanitizing the source to prevent contamination of the generated Debian
source package.

• Non-https://www.debian.org/social_contract.html#guidelines[DFSG] compliant content in the upstream
source.

– Debian takes software freedom seriously and adheres to the DFSG.

• Extraneous auto-generated content in the upstream source.

– Debian packages should rebuild these under the latest system.

• Extraneous VCS content in the upstream source.

– The -i and -I options set in «Раздел 4.5» for the dpkg-source(1) command should avoid
these.

* The -i option is intended for non-native Debian packages.
* The -I option is intended for native Debian packages.

There are several methods to avoid including undesirable content.

9.1 Fix with Files-Excluded
This method is suitable for avoiding non-https://www.debian.org/social_contract.html#guidelines[DFSG]
compliant content in the upstream source tarball.

• Укажите список файлов для удаления в строке Files-Excluded файла debian/copyright.

• Укажите URL для загрузки tar-архива основной ветки в файле debian/watch.

• Запустите команду uscan для загрузки нового tar-архива основной ветки.

– Alternatively, use the «gbp import-orig --uscan --pristine-tar» command.

• mk-origtargz invoked from uscan removes excluded files from the upstream tarball and repack it
as a clean tarball.

• Получившийся tar-архив будет иметь версию с дополнительным суффиком +dfsg.

See «COPYRIGHT FILE EXAMPLES» in mk-origtargz(1).

53

https://www.debian.org/social_contract.html#guidelines

ГЛАВА 9. SANITIZATION OF THE SOURCE 9.2. FIX WITH «DEBIAN/RULES CLEAN»

9.2 Fix with «debian/rules clean»
This method is suitable for avoiding auto-generated files by removing them in the ”debian/rules clean”
target.

Замечание

The ”debian/rules clean” target is called before the ”dpkg-source --build”
command by the dpkg-buildpackage command. The ”dpkg-source --build”
command ignores removed files.

9.3 Fix with extend-diff-ignore
This is for the non-native Debian package.

The problem of extraneous diffs can be fixed by ignoring changes made to specific parts of the source
tree. This is done by adding the ”extend-diff-ignore=… ” line in the debian/source/options file.

debian/source/options to exclude the config.sub, config.guess and Makefile files:
Don't store changes on autogenerated files
extend-diff-ignore = "(^|/)(config\.sub|config\.guess|Makefile)$"

Замечание

This approach always works, even when you can’t remove the file. It saves you
from having to make a backup of the unmodified file just to restore it before the
next build.

Подсказка

If you use the debian/source/local-options file instead, you can hide this setting
from the generated source package. This may be useful when local non-standard
VCS files interfere with your packaging.

9.4 Fix with tar-ignore
This is for the native Debian package.

You can exclude certain files in the source tree from the generated tarball by adjusting the file glob.
Add the ”tar-ignore=… ” lines in the debian/source/options or debian/source/local-options files.

Замечание

For example, if the source package of a native package needs files with
the .o extension as part of the test data, the setting in «Раздел 4.5» may
be too aggressive. You can work around this by dropping the -I option for
DEBUILD_DPKG_BUILDPACKAGE_OPTS in «Раздел 4.5» and adding the
”tar-ignore=… ” lines in the debian/source/local-options file for each package.

54

ГЛАВА 9. SANITIZATION OF THE SOURCE 9.5. FIX WITH «GIT CLEAN -DFX»

9.5 Fix with «git clean -dfx»
The problem of extraneous content in the second build can be avoided by restoring the source tree. This
is done by committing the source tree to the Git repository before the first build.

You can restore the source tree before the second package build. For example:

[debhello] $ git reset --hard
[debhello] $ git clean -dfx

This works because the dpkg-source command ignores the contents of typical VCS files in the source
tree, as specified by the DEBUILD_DPKG_BUILDPACKAGE_OPTS setting in «Раздел 4.5».

Подсказка

If the source tree is not managed by a VCS, run ”git init; git add -A .; git commit”
before the first build.

55

Глава 10

More on packaging

Let’s explore more fundamentals of Debian packaging.

10.1 Package customization
All customization data for the Debian source package resides in the debian/ directory as presented in
«Раздел 5.7»:

• The Debian package build system can be customized through the debian/rules file (see «Раз-
дел 10.2»).

• The Debian package installation path etc. can be customized through the addition of configuration
files such as package.install and package.docs in the debian/ directory for the dh_* commands
from the debhelper package (see «Раздел 6.14»).

When these are not sufficient to make a good Debian package, -p1 patches of debian/patches/*
files are deployed to modify the upstream source. These are applied in the sequence defined in the
debian/patches/series file before building the package as presented in «Раздел 5.9».

You should address the root cause of the Debian packaging problem in the least invasive way possible.
This approach will make the generated package more robust for future upgrades.

Замечание

If the patch addressing the root cause is useful to the upstream project, send it
to the upstream maintainer.

10.2 Customized debian/rules
Flexible customization of the Раздел 6.5 is achieved by adding appropriate override_dh_* targets and
their rules.

When a special operation is required for a certain dh_foo command invoked by the dh command, its
automatic execution can be overridden by adding the makefile target override_dh_foo in the debian/rules
file.

The build process may be customized via the upstream provided interface such as arguments to the
standard source build system commands, such as:

• configure,

• Makefile,

• «python -m build», or

• Build.PL.

56

ГЛАВА 10. MORE ON PACKAGING 10.3. VARIABLES FOR DEBIAN/RULES

In this case, you should add the override_dh_auto_build target with «dh_auto_build -- arguments».
This ensures that arguments are passed to the build system after the default parameters that dh_auto_build
usually passes.

Подсказка

Avoid executing bare build system commands directly if they are supported by
the dh_auto_build command.

См.:

• «Раздел 5.7» for the basic example.

• «Раздел 11.3» to be reminded of the challenge involving the underlying build system.

• «Раздел 11.10» for multiarch customization.

• «Раздел 11.6» for hardening customization.

10.3 Variables for debian/rules
Некоторые определения переменных, которые могут оказаться полезными для debian/rules, мож-
но найти в файлах в каталоге /usr/share/dpkg/. В частности:

pkg-info.mk Set DEB_SOURCE, DEB_VERSION, DEB_VERSION_EPOCH_UPSTREAM, DEB_VERSION_UPSTREAM_REVISION,
DEB_VERSION_UPSTREAM, and DEB_DISTRIBUTION variables obtained from dpkg-parsechangelog(1).
(useful for backport support etc..)

vendor.mk Set DEB_VENDOR and DEB_PARENT_VENDOR variables; and dpkg_vendor_derives_from
macro obtained from dpkg-vendor(1). (useful for vendor support (Debian, Ubuntu, …).)

architecture.mk Set DEB_HOST_* and DEB_BUILD_* variables obtained from dpkg-architecture(1).

buildflags.mk Set CFLAGS, CPPFLAGS, CXXFLAGS, OBJCFLAGS, OBJCXXFLAGS, GCJFLAGS,
FFLAGS, FCFLAGS, and LDFLAGS build flags obtained from dpkg-buildflags(1).

For example, you can add an extra option to CONFIGURE_FLAGS for linux-any target architectures
by adding the following to debian/rules:

DEB_HOST_ARCH_OS ?= $(shell dpkg-architecture -qDEB_HOST_ARCH_OS)
...
ifeq ($(DEB_HOST_ARCH_OS),linux)
CONFIGURE_FLAGS += --enable-wayland
endif

См. «Раздел 11.10», dpkg-architecture(1) и dpkg-buildflags(1).

10.4 Новый выпуск основной ветки
When a new upstream release tarball debhello-newvwesion.tar.xz is released, the Debian source package
can be updated by invoking commands in the old source tree as:

[debhello-0.0] $ uscan
... debhello-newversion.tar.xz downloaded
[debhello-0.0] $ uupdate -v newversion ../debhello-newversion.tar.xz

• The debian/watch file in the old source tree must be a valid one.

• This make symlink ../debhello_newvwesion.orig.tar.xz pointing to ../debhello-newvwesion.tar.xz.

57

ГЛАВА 10. MORE ON PACKAGING 10.5. MANAGE PATCH QUEUE WITH DQUILT

• Files are extracted from ../debhello-newvwesion.tar.xz to ../debhello-newversion/

• Files are copied from ../debhello-oldversion/debian/ to ../debhello-newvesion/debian/ .

After the above, you should refresh debian/patches/* files (see «Раздел 10.5») and update debian/changelog
with the dch(1) command.

When «debian uupdate» is specified at the end of line in the debian/watch file, uscan automatically
executes uupdate(1) after downloading the tarball.

10.5 Manage patch queue with dquilt
You can add, drop, and refresh debian/patches/* files with dquilt to manage patch queue.

• Add a new patch debian/patches/bugname.patch recording the upstream source modification on
the file buggy_file as:

[debhello-0.0] $ dquilt push -a
[debhello-0.0] $ dquilt new bugname.patch
[debhello-0.0] $ dquilt add buggy_file
[debhello-0.0] $ vim buggy_file
...

[debhello-0.0] $ dquilt refresh
[debhello-0.0] $ dquilt header -e
[debhello-0.0] $ dquilt pop -a

• Drop (== disable) an existing patch

– Comment out pertinent line in debian/patches/series
– Erase the patch itself (optional)

• Refresh debian/patches/* files to make «dpkg-source -b» work as expected after updating a
Debian package to the new upstream release.

[debhello-0.0] $ uscan; uupdate # updating to the new upstream release
[debhello-0.0] $ while dquilt push; do dquilt refresh ; done
[debhello-0.0] $ dquilt pop -a

– If conflicts are encountered with «dquilt push» in the above, resolve them and run «dquilt
refresh» manually for each of them.

10.6 Build commands
Here is a recap of popular low level package build commands. There are many ways to do the same
thing.

• dpkg-buildpackage = ядро инструмента для сборки пакета

• debuild = dpkg-buildpackage + lintian (сборка с очищенными переменными окружения)

• schroot = core of the Debian chroot environment tool

• sbuild = dpkg-buildpackage on custom schroot (build in the chroot)

10.7 Note on sbuild
The sbuild(1) command is a wrapper script of dpkg-buildpackage which builds Debian binary packages
in a chroot environment managed by the schroot(1) command. For example, building for Debian unstable
suite can be done as:

[debhello-0.0] $ sudo sbuild -d unstable

58

ГЛАВА 10. MORE ON PACKAGING 10.8. SPECIAL BUILD CASES

In schroot(1) terminology, this builds a Debian package in a clean ephemeral chroot «chroot:unstable-
amd64-sbuild» started as a copy of the clean minimal persistent chroot «source:unstable-amd64-
sbuild».

This build environment was set up as described in «Раздел 4.6» with «sbuild-debian-developer-
setup -s unstable» which essentially did the following:

[~] $ sudo mkdir -p /srv/chroot/dist-amd64-sbuild
[~] $ sudo sbuild-createchroot unstable /srv/chroot/unstable-amd64-sbuild http:// ←↩

deb.debian.org/debian
[~] $ sudo usermod -a -G sbuild <your_user_name>
[~] $ sudo newgrp -

The schroot(1) configuration for unstable-amd64-sbuild was generated at /etc/schroot/chroot.d/unstable-
amd64-sbuild.$suffix :

[unstable-amd64-sbuild]
description=Debian sid/amd64 autobuilder
groups=root,sbuild
root-groups=root,sbuild
profile=sbuild
type=directory
directory=/srv/chroot/unstable-amd64-sbuild
union-type=overlay

Где:

• The profile defined in the /etc/schroot/sbuild/ directory is used to setup the chroot environment.

• /srv/chroot/unstable-amd64-sbuild directory holds the chroot filesystem.

• /etc/sbuild/unstable-amd64-sbuild is symlinked to /srv/chroot/unstable-amd64-sbuild .

You can update this source chroot «source:unstable-amd64-sbuild» by:

[~] $ sudo sbuild-update -udcar unstable

You can log into this source chroot «source:unstable-amd64-sbuild» by:

[~] $ sudo sbuild-shell unstable

Подсказка

If your source chroot filesystem is missing packages such as libeatmydata1,
ccache, and lintian for your needs, you may want to install these by logging into
it.

10.8 Special build cases
The orig.tar.xz file may need to be uploaded for a Debian revision other than 0 or 1 under some
exceptional cases (e.g., for a security upload).

When an essential package becomes a non-essential one (e.g., adduser), you need to remove it
manually from the existing chroot environment for its use by piuparts.

10.9 Upload orig.tar.xz
When you first upload the package to the archive, you need to include the original orig.tar.xz source,
too.

Если номер редакции Debian вашего пакета не является 1 или 0, то это происходит по умолча-
нию. В противном случае, вам следует передать опцию -sa команде dpkg-buildpackage.

59

https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/Chroot

ГЛАВА 10. MORE ON PACKAGING 10.10. ПРОПУЩЕННЫЕ ЗАГРУЗКИ

• dpkg-buildpackage -sa

• debuild -sa

• sbuild --debbuildopts=-sa

• gbp buildpackage -sa

Подсказка

On the other hand, the -sd option will force the exclusion of the original orig.tar.xz
source.

Подсказка

Security uploads require including the orig.tar.xz file.

10.10 Пропущенные загрузки
Если вы создаёте несколько записей в файле debian/changelog и пропускаете загрузки, то вам
следует создать соответствующий файл *_.changes, включающий все изменения с последней за-
грузки. Это можно сделать, передав dpkg-buildpackage опцию -v с указанием последней загружен-
ной версии, например, 1.2.

• dpkg-buildpackage -v1.2

• debuild -v1.2

• sbuild --debbuildopts=-v1.2

• gbp buildpackage -v1.2

10.11 Bug reports
The reportbug(1) command used for the bug report of binarypackage can be customized by the files in
usr/share/bug/binarypackage/.

Команда dh_bugfiles устанавливает эти файлы из шаблонных файлов в каталоге debian/.

• debian/двоичныйпакет.bug-control → usr/share/bug/двоичныйпакет/control

– Этот файл содержит некоторые указания, такие как перенаправления отчёта об ошибке
другому пакету.

• debian/двоичныйпакет.bug-presubj → usr/share/bug/двоичныйпакет/presubj

– Этот файл отображается пользователю с помощью команды reportbug.

• debian/двоичныйпакет.bug-script → usr/share/bug/двоичныйпакет или usr/share/bug/двоичныйпакет/script

– Команда reportbug запускает этот сценарий для создания шаблонного файла для от-
чёта об ошибке.

60

ГЛАВА 10. MORE ON PACKAGING 10.11. BUG REPORTS

See dh_bugfiles(1) and «reportbug’s Features for Developers (README.developers)»

Подсказка

If you always remind the bug reporter of something or ask them about their
situation, use these files to automate it.

61

file:///usr/share/doc/reportbug/README.developers.gz

Глава 11

Продвинутые темы работы над
пакетом

Let’s describe advanced topics on Debian packaging.

11.1 Historical perspective
Let me oversimplify historical perspective of Debian packaging practices focused on the non-native
packaging.

Debian was started in 1990s when upstream packages were available from public FTP sites such
as Sunsite. In those early days, Debian packaging used Debian source format currently known as the
Debian source format «1.0»:

• The Debian source package ships a set of files for the Debian source package.

– package_version.orig.tar.xz : symlink to or copy of the upstream released file.
– package_version-revision.diff.gz : «One big patch» for Debian modifications.
– package_version-revision.dsc : package description.

• Several workaround approaches such as dpatch, dbs, or cdbs were deployed to manage multiple
topic patches.

The modern Debian source format «3.0 (quilt)» was invented around 2008 (see «ProjectsDebSrc3.0»):

• The Debian source package ships a set of files for the Debian source package.

– package_version.orig.tar.?z : symlink to or copy of the upstream released file.
– package_version-revision.debian.tar.?z : tarball of debian/ for Debian modifications.

* The debian/source/format file contains «3.0 (quilt)».
* Optional multiple topic patches are stored in the debian/patches/ directory.

– package_version-revision.dsc : package description.

• The standardized approach to manage multiple topic patches using quilt(1) is deployed for the
Debian source format «3.0 (quilt)».

Most Debian packages adopted the Debian source formats «3.0 (quilt)» and «3.0 (native)».
Now, the git(1) is popular with upstream and Debian developers. The git and its associated tools

are important part of the modern Debian packaging workflow. This modern workflow involving git will be
mentioned later in «Глава 12».

62

https://www.debian.org/doc/manuals/project-history/index.en.html
https://en.wikipedia.org/wiki/Sunsite
https://wiki.debian.org/Projects/DebSrc3.0

ГЛАВА 11. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 11.2. CURRENT TRENDS

11.2 Current trends
Current Debian packaging practices and their trends are moving target. See:

• «Debian Trends» — Hints for «De facto standard» of Debian practices

– Build systems: dh
– Debian source format: «3.0 (quilt)»
– VCS: git
– VCS Hosting: salsa
– Rules-Requires-Root: adopted, fakeroot
– Copyright format: DEP-5

• «debhelper-compat-upgrade-checklist(7) manpage» — Upgrade checklist for debhelper

• «DEP - Debian Enhancement Proposals» — Formal proposals to enhance Debian

You can also search entire Debian source code data by yourself, too.

• «Debian Sources» — code search tool

– «Debian Code Search» — wiki page describing its usage

• «Debian Code Search» — another code search tool

11.3 Note on build system
Auto-generated files of the build system may be found in the released upstream tarball. These should
be regenerated when Debian package is build. E.g.:

• «dh $@ --with autoreconf» should be used in the debian/rules if Autotools (autoconf + automake)
are used.

Some modern build system may be able to download required source codes and binary files from
arbitrary remote hosts to satisfy build requirements. Don’t use this download feature. The official Debian
package is required to be build only with packages listed in Build-Depends: of the debian/control file.

11.4 Непрерывная интеграция
The dh_auto_test(1) command is a debhelper command that tries to automatically run the test suite
provided by the upstream developer during the Debian package building process.

The autopkgtest(1) command can be used after the Debian package building process. It tests generated
Debian binary packages in the virtual environment using the debian/tests/control RFC822-style metadata
file as continuous integration (CI). See:

• Documents in the /usr/share/doc/autopkgtest/ directory

• «4. autopkgtest: Automatic testing for packages» of the «Ubuntu Packaging Guide»

Кроме того, в Debian существует ещё несколько других инструментов непрерывной интеграции.

• The Salsa offers «Раздел 12.3».

• The debci package: CI platform on top of the autopkgtest package

• Пакет jenkins: платформа непрерывной интеграции общего назначения

63

https://trends.debian.net/
https://salsa.debian.org/
https://dep-team.pages.debian.net/deps/dep5/
https://dep-team.pages.debian.net/
https://sources.debian.org/
https://wiki.debian.org/DebianCodeSearch
https://dcs.zekjur.net/
https://en.wikipedia.org/wiki/Continuous_integration
https://packaging.ubuntu.com/html/auto-pkg-test.html
https://salsa.debian.org

ГЛАВА 11. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 11.5. ПРЕДЗАГРУЗКА

11.5 Предзагрузка
Debian cares about supporting new ports or flavours. The new ports or flavours require bootstrapping
operation for the cross-build of the initial minimal native-building system. In order to avoid build-dependency
loops during bootstrapping, the build-dependency needs to be reduced using the DEB_BUILD_PROFILES
environment variable.

See Debian wiki: «BuildProfileSpec».

Подсказка

If a core package foo build depends on a package bar with deep build
dependency chains but bar is only used in the test target in foo, you can safely
mark the bar with <!nocheck> in the Build-depends of foo to avoid build loops.

11.6 Усиление безопасности компилятора
The compiler hardening support spreading for Debian jessie (8.0) demands that we pay extra attention
to the packaging.

Вам следует подробно изнакомиться со следующей справочной документацией:

• Debian wiki: «Hardening»

• Debian wiki: «Hardening Walkthrough»

Команда debmake добавляет шаблонные комментарии в файл debian/rules, требующиеся для
DEB_BUILD_MAINT_OPTIONS, DEB_CFLAGS_MAINT_APPEND и DEB_LDFLAGS_MAINT_APPEND
(см. «Глава 5» и dpkg-buildflags(1)).

11.7 Повторяемая сборка
Here are some recommendations to attain a reproducible build result.

• Не включайте в результат временную метку на основе системного времени.

• Don’t embed the file path of the build environment.

• Use «dh $@» in the debian/rules to access the latest debhelper features.

• Export the build environment as «LC_ALL=C.UTF-8» (see «Раздел 13.1»).

• Set the timestamp used in the upstream source from the value of the debhelper-provided environment
variable $SOURCE_DATE_EPOCH.

• Подробности можно найти на вики-странице «ReproducibleBuilds».

– «Руководство ReproducibleBuilds».
– «ReproducibleBuilds TimestampsProposal».

Reproducible builds are important for security and quality assurance. They allow independent verification
that no vulnerabilities or backdoors have been introduced during the build process.

Управляющий файл имя-исходного-кода_версия-исходного-кода_архитектура.buildinfo, со-
здаваемый dpkg-genbuildinfo(1), содержит информацию о сборочном окружении. См. deb-buildinfo(5)

64

https://wiki.debian.org/DebianBootstrap
https://wiki.debian.org/BuildProfileSpec
https://wiki.debian.org/Hardening
https://wiki.debian.org/HardeningWalkthrough
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/ReproducibleBuilds/Howto
https://wiki.debian.org/ReproducibleBuilds/TimestampsProposal

ГЛАВА 11. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 11.8. ПЕРЕМЕННЫЕ ПОДСТАНОВКИ

11.8 Переменные подстановки
Кроме того, файл debian/control определяет зависимости пакета, в которых может исопльзовать-
ся «механизм подстановки переменных» (substvar), который освобождает сопровождающих па-
кета от рутинной работы по отслеживанию большинства простых зависимостей пакета. См. deb-
substvars(5).

The debmake command supports the following substvars:

• ${misc:Depends} для всех двоичных пакетов

• ${misc:Pre-Depends} для всех мультиархитектурных пакетов

• ${shlibs:Depends} для всех двоичных пакетов с исполняемыми файлами и пакетов библио-
тек

• ${python:Depends} для всех пакетов с кодом на языке Python

• ${python3:Depends} для всех пакетов с кодом на языке Python3

• ${perl:Depends} для всех пакетов с кодом на языке Perl

• ${ruby:Depends} для всех пакетов с кодом на языке Ruby

For the shared library, required libraries found simply by «objdump -p /path/to/program | grep NEEDED»
are covered by the shlib substvar.

For Python and other interpreters, required modules found simply looking for lines with «import»,
«use», «require», etc., are covered by the corresponding substvars.

Для остальных программ, не использующих собственные переменные подстановки, зависимо-
сти обрабатываются переменной misc.

Для программ командной оболочки POSIX нет простого способа определения зависимостей,
поэтому их зависимости не обрабатываются никакой переменной.

Для библиотек и модулей, требующихся через механизм динамической загрузки, включая ме-
ханизм «GObject-интроспекция», нет простого способа определения зависимостей, поэтому их за-
висимости не обрабатываются никакой переменной.

11.9 Пакет библиотеки
Packaging library software requires you to perform much more work than usual. Here are some reminders
for packaging library software:

• The library binary package must be named as in «Раздел 11.17».

• Debian ships shared libraries such as /usr/lib/<triplet>/libfoo-0.1.so.1.0.0 (see «Раздел 11.10»).

• Debian encourages using versioned symbols in the shared library (see «Раздел 11.16»).

• Debian не поставляет libtool-архивы библиотек *.la.

• Debian discourages using and shipping *.a static library files.

Before packaging shared library software, see:

• «Chapter 8 - Shared libraries» of the «Debian Policy Manual»

• «10.2 Libraries» of the «Debian Policy Manual»

• «6.7.2. Libraries» of the «Debian Developer’s Reference»

Для получения исторических сведений обратитесь к следующей документации:

• «Спасение из ада зависимостей» 1

– This encourages having versioned symbols in the shared library.
1Этот документ был написан до появления файла symbols.

65

https://www.debian.org/doc/debian-policy/ch-source.html#s-substvars
https://wiki.gnome.org/Projects/GObjectIntrospection
https://www.debian.org/doc/debian-policy/ch-sharedlibs.html
https://www.debian.org/doc/debian-policy/ch-files.html#libraries
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-libraries
https://debconf4.debconf.org/talks/dependency-hell/img1.html

ГЛАВА 11. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 11.10. MULTIARCH

• «Debian Library Packaging guide» 2

– Please read the discussion thread following its announcement, too.

11.10 Multiarch
Multiarch support for cross-architecture installation of binary packages (particularly i386 and amd64, but
also other combinations) in the dpkg and apt packages introduced in Debian wheezy (7.0, May 2013),
demands that we pay extra attention to packaging.

Вам следует подробно изнакомиться со следующей справочной документацией:

• Ubuntu вики (основная ветка разработки)

– «MultiarchSpec»

• Debian вики (ситуация в Debian)

– «Поддержка мультиархитектурности в Debian»
– «Multiarch/Implementation»

Мультиархитектурность включается с помощью значения <тройки> вида i386-linux-gnu или
x86_64-linux-gnu в пути установки разделяемых библиотек вида /usr/lib/<тройка>/ и т. д.

• Значение <тройки>, внутренне необходимое для сценариев debhelper, устанавливается са-
мими сценариями неявно. Сопровождающему не нужно об этом беспокоиться.

• The <triplet> value used in override_dh_* target scripts must be explicitly set in the debian/rules
file by the maintainer. The <triplet> value is stored in the $(DEB_HOST_MULTIARCH) variable in
the following debian/rules snippet example:
DEB_HOST_MULTIARCH = $(shell dpkg-architecture -qDEB_HOST_MULTIARCH)
...
override_dh_install:
mkdir -p package1/lib/$(DEB_HOST_MULTIARCH)
cp -dR tmp/lib/. package1/lib/$(DEB_HOST_MULTIARCH)

См.:

• «Раздел 10.3»

• «Раздел 17.2»

• «Раздел 11.12»

• «dpkg-architecture(1) manpage»

11.11 Split of a Debian binary package
For well behaving build systems, the split of a Debian binary package into small ones can be realized as
follows.

• Создайте записи с определениями метаданных двоичных пакетах в файле debian/control
для всех двоичных пакетов.

• Укажите все пути к файлам (относительно каталга debian/tmp) в соответствующих файлах
debian/двоичныйпакет.install.

С примерами можно ознакомиться в настоящем руководстве:

• «Раздел 15.11» (на основе Autotools)

• «Раздел 15.12» (на основе CMake)

An intuitive and flexible method to create the initial template debian/control file defining the split of
the Debian binary packages is accommodated with the -b option. See «Раздел 17.2».

2The strong preference is to use the SONAME versioned -dev package names over the single -dev package name in «Chapter
6. Development (-DEV) packages», which does not seem to be shared by the former ftp-master (Steve Langasek). This document
was written before the introduction of the multiarch system and the symbols file.

66

https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html
https://lists.debian.org/debian-devel/2004/06/msg00069.html
https://wiki.ubuntu.com/MultiarchSpec
https://wiki.debian.org/Multiarch
https://wiki.debian.org/Multiarch/Implementation
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html#devpkg
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html#devpkg

ГЛАВА 11. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 11.12. СЦЕНАРИИ И ПРИМЕРЫ …

11.12 Сценарии и примеры разделения пакета
Ниже приводится несколько типичных сценариев разделения мультиархитектурного пакета для
следующих примеров исходного кода основной ветки разработки, в которых используется команда
debmake:

• a library source libfoo-1.0.tar.xz

• a tool source bar-1.0.tar.xz written in a compiled language

• a tool source baz-1.0.tar.xz written in an interpreted language

двоичныйпакеттип Architecture: Multi-
Arch:

Содержимое пакета

libfoo1 lib* any same разделяемая бибиотека, возможна
совместная установка

libfoo-dev dev* any same заголовочные файлы разделяемой
библиотеки и проч., возможна
совместная установка

libfoo-tools bin* any foreign программы с поддержкой времени
исполнения, совместная установка
невозможна

libfoo-doc doc* all foreign файлы документации разделяемой
библиотеки

bar bin* any foreign скомпилированный файлы
программы, совместная устанвка
невозможна

bar-doc doc* all foreign файлы документации программы
baz script all foreign файлы интерпретируемой

программы

11.13 Multiarch library path
Debian policy requires to comply with the «Filesystem Hierarchy Standard (FHS), version 3.0», with the
exceptions noted in «File System Structure».

The most notable exception is the use of /usr/lib/<triplet>/ instead of /usr/lib<qual>/ (e.g., /lib32/
and /lib64/) to support a multiarch library.

Таблица 11.2 Опции путя мультиархитектурных библиотек
Классический путь Мультиархитектурный путь

для i386
Мультиархитектуный путь
для amd64

/lib/ /lib/i386-linux-gnu/ /lib/x86_64-linux-gnu/
/usr/lib/ /usr/lib/i386-linux-gnu/ /usr/lib/x86_64-linux-gnu/

Для пакетов на основе Autotools, в которых используется пакет debhelper с (compat>=9), уста-
новка этого пути выполняется автоматически с помощью команды dh_auto_configure.

При работе с другими пакетами, использующими неподдерживаемые системы сборки, вам сле-
дует вручную изменить путь установки указанным ниже способом.

• If «./configure» is used in the override_dh_auto_configure target in debian/rules, make sure to
replace it with «dh_auto_configure --» while re-targeting the install path from /usr/lib/ to /usr/lib/$(DEB_HOST_MULTIARCH)/.

• Замените все пути с /usr/lib/ на /usr/lib/*/ в файлах debian/foo.install.

All files installed simultaneously as the multiarch package to the same file path should have exactly
the same file content. You must be careful with differences generated by the data byte order and by the
compression algorithm.

Файлы разделяемых библиотек, расположенные в каталогах по умолчанию, /usr/lib/ и /usr/lib/<тройка>/,
загружаются автоматически.

67

https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://www.debian.org/doc/debian-policy/ch-opersys.html#file-system-structure

ГЛАВА 11. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 11.14. MULTIARCH HEADER FILE PATH

For shared library files in another path, the GCC option -l must be set by the pkg-config command
to make them load properly.

11.14 Multiarch header file path
В мультиархитектурной системе Debian GCC по умолчанию включает и /usr/include/, и /usr/include/<тройка>/.

If the header file is not in those paths, the GCC option -I must be set by the pkg-config command to
make ”#include <foo.h>” work properly.

Таблица 11.3 Опции пути мультиархитектурного заголовочного файла
Классический путь Мультиархитектурный путь

для i386
Мультиархитектуный путь
для amd64

/usr/include/ /usr/include/i386-linux-gnu/ /usr/include/x86_64-linux-gnu/
/usr/include/имяпакета//usr/include/i386-linux-

gnu/имяпакета/
/usr/include/x86_64-linux-
gnu/имяпакета/

/usr/lib/i386-linux-
gnu/имяпакета/

/usr/lib/x86_64-linux-
gnu/имяпакета/

The use of the /usr/lib/<triplet>/packagename/ path for the library files allows the upstream maintainer
to use the same install script for the multiatch system with /usr/lib/<triplet> and the biarch system with
/usr/lib<qual>/. 3

The use of the file path containing packagename enables having more than 2 development libraries
simultaneously installed on a system.

11.15 Multiarch *.pc file path
Программа pkg-config используется для получения информации об установленных в системе
библиотеках. Она сохраняет свои параметры настройки в файле *.pc и используется для уста-
новки опций -I и -l для GCC.

Таблица 11.4 Опции пути к файлу *.pc
Классический путь Мультиархитектурный путь

для i386
Мультиархитектуный путь
для amd64

/usr/lib/pkgconfig/ /usr/lib/i386-linux-
gnu/pkgconfig/

/usr/lib/x86_64-linux-
gnu/pkgconfig/

11.16 Библиотека символов
The symbols support in dpkg introduced in Debian lenny (5.0, May 2009) helps us to manage the
backward ABI compatibility of the library package with the same package name. The DEBIAN/symbols
file in the binary package provides the minimal version associated with each symbol.

An oversimplified method for the library packaging is as follows.

• Extract the old DEBIAN/symbols file of the immediate previous binary package with the «dpkg-
deb -e» command.

– Либо можно использовать команду mc для распаковки файла DEBIAN/symbols.

• Скопируйте его в файл debian/двоичныйпакет.symbols.

– Если это первый пакет, то используйте пустой файл.
3This path is compliant with the FHS. «Filesystem Hierarchy Standard: /usr/lib : Libraries for programming and packages»

states «Applications may use a single subdirectory under /usr/lib. If an application uses a subdirectory, all architecture-dependent
data exclusively used by the application must be placed within that subdirectory.»

68

https://www.debian.org/doc/packaging-manuals/fhs/fhs-2.3.html#USRLIBLIBRARIESFORPROGRAMMINGANDPA

ГЛАВА 11. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 11.17. LIBRARY PACKAGE NAME

• Соберите двоичный пакет.

– If the dpkg-gensymbols command warns about some new symbols:
* Extract the updated DEBIAN/symbols file with the «dpkg-deb -e» command.
* Удалите номер редакции версии Debian, например, -1, из файла.
* Скопируйте его в файл debian/двоичныйпакет.symbols.
* Повторно соберите двоичный пакет.

– If the dpkg-gensymbols command does not warn about new symbols:
* Работа с библиотекой завершена.

Подробные сведения можно получить, обратившись к следующей справочной информации:

• «8.6.3 The symbols system» of the «Debian Policy Manual»

• «dh_makeshlibs(1) manapage»

• «dpkg-gensymbols(1) manapage»

• «dpkg-shlibdeps(1) manapage»

• «deb-symbols(5) manapage»

Также следует ознакомиться со следующей документацией:

• Debian wiki: «UsingSymbolsFiles»

• Debian wiki: «Projects/ImprovedDpkgShlibdeps»

• Debian kde team: «Working with symbols files»

• «Раздел 15.11»

• «Раздел 15.12»

Подсказка

For C++ libraries and other cases where the tracking of symbols is problematic,
follow «8.6.4 The shlibs system» of the «Debian Policy Manual», instead. Please
make sure to erase the empty debian/binarypackage.symbols file generated by
the debmake command. For this case, the DEBIAN/shlibs file is used.

11.17 Library package name
Let’s consider that the upstream source tarball of the libfoo library is updated from libfoo-7.0.tar.xz to
libfoo-8.0.tar.xz with a new SONAME major version which affects other packages.

The binary library package must be renamed from libfoo7 to libfoo8 to keep the unstable suite system
working for all dependent packages after the upload of the package based on the libfoo-8.0.tar.xz.

Внимание

If the binary library package isn’t renamed, many dependent packages in the
unstable suite become broken just after the library upload even if a binNMU
upload is requested. The binNMU may not happen immediately after the upload
due to several reasons.

Пакет -dev должен соответствовать следующим правилам именования:

69

https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#the-symbols-system
https://wiki.debian.org/UsingSymbolsFiles
https://wiki.debian.org/Projects/ImprovedDpkgShlibdeps
https://qt-kde-team.pages.debian.net/symbolfiles.html
https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#the-shlibs-system

ГЛАВА 11. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 11.18. СМЕНА БИБЛИОТЕК

• Используйте имя пакета -dev без номера версии: libfoo-dev

– This is the typical one for leaf library packages.
– В архиве может находится только одна версия пакета с исходным кодом библиотеки.

* The associated library package needs to be renamed from libfoo7 to libfoo8 to prevent
dependency breakage in the unstable suite during the library transition.

– This approach should be used if the simple binNMU resolves the library dependency quickly
for all affected packages. (ABI change by dropping the deprecated API while keeping the
active API unchanged.)

– This approach may still be a good idea if manual code updates, etc. can be coordinated and
manageable within limited packages. (API change)

• Используйте имена пакетов -dev с указанием версии: libfoo7-dev и libfoo8-dev

– This is typical for many major library packages.
– В архиве могут находится две версии пакетов с исходным кодом библиотеки.

* Все зависимые пакет должны зависить от libfoo-dev.
* Пусть и libfoo7-dev, и libfoo8-dev предоставляют libfoo-dev.
* The source package needs to be renamed as libfoo7-7.0.tar.xz and libfoo8-8.0.tar.xz

respectively from libfoo-?.0.tar.xz.
* В зависимости от пакета путь установки файлов, включающий libfoo7 и libfoo8, со-

ответственно, для заголовочных файлов и проч., следует выбирать так, чтобы их
можно было установить одновременно.

– По возможности не используйте слишком жёсткий подход.
– This approach should be used if the update of multiple dependent packages require manual

code updates, etc. (API change) Otherwise, the affected packages become RC buggy with
FTBFS (Fails To Build From Source).

Подсказка

If the data encoding scheme changes (e.g., latin1 to utf-8), the same care as the
API change needs to be taken.

См. «Раздел 11.9».

11.18 Смена библиотек
When you package a new library package version which affects other packages, you must file a transition
bug report against the release.debian.org pseudo package using the reportbug command with the ben
file and wait for the approval for its upload from the Release Team.

У команды подготовки выпуска имеется «система отслеживания переходов». См. «Transitions».

Предостережение

Please make sure to rename binary packages as in «Раздел 11.17».

70

https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://ben.debian.net/#_query_language
https://ben.debian.net/#_query_language
https://wiki.debian.org/Teams/ReleaseTeam
https://release.debian.org/transitions/
https://wiki.debian.org/Teams/ReleaseTeam/Transitions

ГЛАВА 11. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 11.19. БЕЗОПАСНАЯ BINNMU-ЗАГРУЗКА

11.19 Безопасная binNMU-загрузка
A «binNMU» is a binary-only non-maintainer upload performed for library transitions etc. In a binNMU
upload, only the «Architecture: any» packages are rebuilt with a suffixed version number (e.g. version
2.3.4-3 will become 2.3.4-3+b1). The «Architecture: all» packages are not built.

The dependency defined in the debian/control file among binary packages from the same source
package should be safe for the binNMU. This needs attention if there are both «Architecture: any» and
«Architecture: all» packages involved in it.

• «Architecture: any» package: depends on «Architecture: any» foo package

– Depends: foo (= ${binary:Version})

• «Architecture: any» package: depends on «Architecture: all» bar package

– Depends: bar (= ${source:Version})

• «Architecture: all» package: depends on «Architecture: any» baz package

– Depends: baz (>= ${source:Version}), baz (<< ${source:Version}.0~)

11.20 Отладочная информация
The Debian package is built with the debugging information but packaged into the binary package after
stripping the debugging information as required by «Chapter 10 - Files» of the «Debian Policy Manual».

См.

• «6.7.9. Best practices for debug packages» of the «Debian Developer’s Reference».

• «18.2 Debugging Information in Separate Files» of the «Debugging with gdb»

• «dh_strip(1) manapage»

• «strip(1) manapage»

• «readelf(1) manapage»

• «objcopy(1) manapage»

• Debian wiki: «DebugPackage»

• Debian wiki: «AutomaticDebugPackages»

• Сообщение в списке рассылки debian-devel: «Информация о статусе автоматических отла-
дочных пакетов» (2015-08-15)

11.21 -dbgsym package
The debugging information is automatically packaged separately as the debug package using the dh_strip
command with its default behavior. The name of such a debug package normally has the -dbgsym suffix.

• The debian/rules file shouldn’t explicitly contain dh_strip.

• Set the Build-Depends to debhelper-compat (>=13) while removing Build-Depends to debhelper
in debian/control.

71

https://wiki.debian.org/binNMU
https://www.debian.org/doc/debian-policy/ch-files.html
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-dbg
https://sourceware.org/gdb/current/onlinedocs/gdb/Separate-Debug-Files.html#Separate-Debug-Files
https://wiki.debian.org/DebugPackage
https://wiki.debian.org/AutomaticDebugPackages
https://lists.debian.org/debian-devel/2015/08/msg00443.html
https://lists.debian.org/debian-devel/2015/08/msg00443.html

ГЛАВА 11. ПРОДВИНУТЫЕ ТЕМЫ РАБОТЫ … 11.22. DEBCONF

11.22 debconf
Пакет debconf позволяет нам настраивать пакеты в ходе их установки двуями основными спосо-
бами:

• неинтерактивно из предпосевных настроек программы установки Debian.

• interactively from the menu interface (dialog, gnome, kde, …)

– установка пакета: вызывается командой dpkg
– установленный пакет: вызывается командой dpkg-reconfigure

Всё взаимодействие с пользователем в ходе установки пакета должны обрабатыватся систе-
мой debconf с помощью следующих файлов.

• debian/binarypackage.config

– Этот config-сценарий debconf используется для того, чтобы задавать любые вопросы,
необходимые для настройки пакета.

• debian/двоичныйпакет.template

– Этот templates-файл debconf используется для того, чтобы задавать любые вопросы,
наобходимые для настройки пакета.

These debconf files are called by package configuration scripts in the binary Debian package

• DEBIAN/binarypackage.preinst

• DEBIAN/binarypackage.prerm

• DEBIAN/binarypackage.postinst

• DEBIAN/binarypackage.postrm

See dh_installdebconf(1), debconf(7), debconf-devel(7) and «3.9.1 Prompting in maintainer scripts»
in the «Debian Policy Manual».

72

https://www.debian.org/doc/debian-policy/ch-binary.html#prompting-in-maintainer-scripts

Глава 12

Packaging with git

Up to «Глава 11», we focused on packaging operations without using Git or any other VCS. These
traditional packaging operations were based on the tarball released by the upstream as mentioned in
«Раздел 11.1».

Currently, the git(1) command is the de-facto platform for the VCS tool and is the essential part of
both upstream development and Debian packaging activities. (See Debian wiki «Debian git packaging
maintainer branch formats and workflows» for existing VCS workflows.)

Замечание

Since the non-native Debian source package uses «diff -u» as its backend
technology for the maintainer modification, it can’t represent modification
involving symlink, file permissions, nor binary data (March 2022 discussion on
debian-devel@l.d.o). Please avoid making such maintainer modifications even
though these can be recorded in the Git repository.

Since VCS workflows are complicated topic and there are many practice styles, I only touch on some
key points with minimal information, here.

Salsa is the remote Git repository service with associated tools. It offers the collaboration platform for
Debian packaging activities using a custom GitLab application instance. See:

• «Раздел 12.1»

• «Раздел 12.2»

• «Раздел 12.3»

There are 2 styles of branch names for the Git repository used for the packaging. See «Раздел 12.4».
There are 2 main usage styles for the Git repository for the packaging. See:

• «Раздел 12.5»

• «Раздел 12.13»

There are 2 notable Debian packaging tools for the Git repository for the packaging.

• gbp(1) and its subcommands:

– This is a tool designed to work mainly with «Раздел 12.5».
– See «Раздел 12.9».

• dgit(1) and its subcommands:

– This is a tool designed to work mainly with «Раздел 12.13».
– This contains a tool to upload Debian packages using the dgit server.
– See «Раздел 12.14».

73

https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Version_control
https://wiki.debian.org/GitPackagingSurvey
https://wiki.debian.org/GitPackagingSurvey
https://lists.debian.org/debian-devel/2022/03/msg00124.html
https://lists.debian.org/debian-devel/2022/03/msg00124.html
https://salsa.debian.org
https://en.wikipedia.org/wiki/GitLab

ГЛАВА 12. PACKAGING WITH GIT 12.1. SALSA REPOSITORY

12.1 Salsa repository
It is highly desirable to host Debian source code package on Salsa. Over 90% of all Debian source code
packages are hosted on Salsa. 1

The exact VCS repository hosting an existing Debian source code package can be identified by a
metadata field Vcs-*which can be viewed with the apt-cache showsrc <package-name> command.

12.2 Salsa account setup
After signing up for an account on Salsa, make sure that the following pages have the same e-mail
address and GPG keys you have configured to be used with Debian, as well as your SSH key:

• https://salsa.debian.org/-/profile/emails

• https://salsa.debian.org/-/user_settings/gpg_keys

• https://salsa.debian.org/-/user_settings/ssh_keys

12.3 Salsa CI service
Salsa runs Salsa CI service as an instance of GitLab CI for «Раздел 11.4».

For every «git push» instances, tests which mimic tests run on the official Debian package service
can be run by setting Salsa CI configuration file «Раздел 6.13» as:

include:
- https://salsa.debian.org/salsa-ci-team/pipeline/raw/master/recipes/debian.yml

Customizations here

12.4 Branch names
The Git repository for the Debian packaging should have at least 2 branches:

• debian-branch to hold the current Debian packaging head.

– old style: master (or debian, main, …)
– DEP-14 style: debian/latest

• upstream-branch to hold the upstream releases in the imported form.

– old style: upstream
– DEP-14 style: upstream/latest

In this tutorial, old style branch names are used in examples for simplicity.

Замечание

This upstream-branch may need to be created using the tarball released by the
upstream independent of the upstream Git repository since it tends to contain
automatically generated files.

The upstream Git repository content can co-exit in the local Git repository used for the Debian packaging
by adding its copy. E.g.:
[debhello] $ git remote add upstreamvcs <url-upstream-git-repo>
[debhello] $ git fetch upstreamvcs master:upstream-master

This allows easy cherry-picking from the upstream Git repository for bug fixes.
1Use of git.debian.org or alioth.debian.org are deprecated now.

74

https://salsa.debian.org
https://salsa.debian.org
https://salsa.debian.org
https://salsa.debian.org/-/profile/emails
https://salsa.debian.org/-/user_settings/gpg_keys
https://salsa.debian.org/-/user_settings/ssh_keys
https://salsa.debian.org
https://salsa.debian.org/salsa-ci-team/pipeline
https://docs.gitlab.com/ee/ci/
https://salsa.debian.org/salsa-ci-team/pipeline
https://dep-team.pages.debian.net/deps/dep14/
https://dep-team.pages.debian.net/deps/dep14/

ГЛАВА 12. PACKAGING WITH GIT 12.5. PATCH UNAPPLIED GIT REPOSITORY

12.5 Patch unapplied Git repository
The patch unapplied Git repository can be summarized as:

• This seems to be the traditional practice as of 2024.

• The source tree matches extracted contents by «dpkg-source -x --skip-patches» of the Debian
source package.

– The upstream source is recorded in the Git repository without changes.
– The maintainer modified contents are confined within the debian/* directory.
– Maintainer changes to the upstream source are recorded in debian/patches/* files for the

Debian source format «3.0 (quilt)».

• This repository style is useful for all variants of traditional workflows and gbp based workflow:

– «Раздел 5.7» (no patch)
– «Раздел 5.10»

* debian/patches/* files can also be generated using «git format-patch», «git diff», or
«gitk» from git commits in the through-away maintainer modification branch or from the
upstream unreleased commits.

– «Раздел 5.11» including the last «dquilt pop -a» step
– «Раздел 12.6»

• Use helper scripts such as dquilt(1) and gbp-pq(1) to manage data in debian/patches/* files.

– Add .pc line to the ~/.gitignore file if dquilt is used.

• Use «dpkg-source -b» to build the Debian source package.

• Use dput(1) to upload the Debian source package.

12.6 Patch by «gbp-pq» approach
For «Раздел 12.5», you can generate debian/patches/* files using the gbp-pq(1) command from git
commits in the through-away patch-queue branch.

Unlike dquilt which offers similar functionality as seen «Раздел 5.11» and «Раздел 10.5», gbp-pq
doesn’t use .pc/* files to track patch state, but instead gbp-pq utilizes temporary branches in git.

12.7 Manage patch queue with gbp-pq
You can add, drop, and refresh debian/patches/* files with gbp-pq to manage patch queue.

If the package is managed in «Раздел 12.5» using the git-buildpackage package, you can revise
the upstream source to fix bug as the maintainer and release a new Debian revision using gbp pq.

• Add a new patch recording the upstream source modification on the file buggy_file as:

[debhello] $ git checkout master
[debhello] $ gbp pq import
gbp:info: ... imported on 'patch-queue/master
[debhello] $ vim buggy_file
...

[debhello] $ git add buggy_file
[debhello] $ git commit
[debhello] $ gbp pq export
gbp:info: On 'patch-queue/master', switching to 'master'
gbp:info: Generating patches from git (master..patch-queue/master)
[debhello] $ git add debian/patches/*
[debhello] $ dch -i
[debhello] $ git commit -a -m "Closes: #<bug_number>"
[debhello] $ git tag debian/<version>-<rev>

75

ГЛАВА 12. PACKAGING WITH GIT 12.8. GBP IMPORT-DSCS --DEBSNAP

• Drop (== disable) an existing patch

– Comment out pertinent line in debian/patches/series
– Erase the patch itself (optional)

• Refresh debian/patches/* files to make «dpkg-source -b» work as expected after updating a
Debian package to the new upstream release.

[debhello] $ git checkout master
[debhello] $ gbp pq --force import # ensure patch-queue/master branch
gbp:info: ... imported on 'patch-queue/master
[debhello] $ git checkout master
[debhello] $ gbp import-orig --pristine-tar --uscan
...

gbp:info: Successfully imported version ?.?.? of ../packagename_?.?.?.orig. ←↩
tar.xz

[debhello] $ gbp pq rebase
... resolve conflicts and commit to patch-queue/master branch
[debhello] $ gbp pq export
gbp:info: On 'patch-queue/master', switching to 'master'
gbp:info: Generating patches from git (master..patch-queue/master)
[debhello] $ git add debian/patches
[debhello] $ git commit -m "Update patches"
[debhello] $ dch -v <newversion>-1
[debhello] $ git commit -a -m "release <newversion>-1"
[debhello] $ git tag debian/<newversion>-1

12.8 gbp import-dscs --debsnap
For Debian source packages named «<source-package>» recorded in the snapshot.debian.org archive,
an initial git repository managed in «Раздел 12.5» with all of the Debian version history can be generated
as follows.

[debhello] $ gbp import-dscs --debsnap --pristine-tar <source-package>

12.9 Note on gbp
The gbp command is provided by the git-buildpackage package.

• This command is designed to manage contents of «Раздел 12.5» efficiently.

• Use «gbp import-orig» to import the new upstream tar to the git repository.

– The «--pristine-tar» option for the «git import-orig» command enables storing the upstream
tarball in the same git repository.

– The «--uscan» option as the last argument of the «gbp import-orig» command enables
downloading and committing the new upstream tarball into the git repository.

• Use «gbp import-dsc» to import the previous Debian source package to the git repository.

• Use «gbp dch» to generate the Debian changelog from the git commit messages.

• Use «gbp buildpackage» to build the Debian binary package from the git repository.

– The sbuild package can be used as its clean chroot build backend either by configuration or
adding «--git-builder=’sbuild -A -s --source-only-changes -v -d unstable’»

• Use «gbp pull» to update the debian, upstream and pristine-tar branches safely from the remote
repository.

• Use «gbp pq» to manage quilt patches without using dquilt command.

76

http://snapshot.debian.org/

ГЛАВА 12. PACKAGING WITH GIT 12.10. THE GIT REPOSITORY BROWSER

• Use «gbp clone REPOSITORY_URL» to clone and set up tracking branches for debian, upstream
and pristine-tar.

Package history management with the git-buildpackage package is becoming the standard practice
for many Debian maintainers. See more at:

• «Сборка пакетов Debian с помощью git-buildpackage»

• «4 tips to maintain a “3.0 (quilt)” Debian source package in a VCS»

• The systemd packaging practice documentation on «Building from source»

• The workflow mentioned in dgit-maint-gbp(7) which enables to use this gbp with dgit

12.10 The Git repository browser
The gitk command in the gitk package displays changes in a repository or a selected set of commits.
This includes visualizing the commit graph, showing information related to each commit, and the files in
the trees of each revision.

This gitk command also provides very intuitive UI to many cumbersome operations of the «git»
command such as «git checkout … », «git reset* … », «git diff … », etc..

12.11 Git commit history organization
When your local Git commit history becomes intertwined, you need to organize it before pushing it out
to the public.

The most simple organization process is to squash all changes to a single commit using «git rebase
-i» interactively.

But this may create a huge commit with files such as auto-generated files not intended to be committed.
You can drop such files in the commit using «git rm some_file» and «git commit --amend». This may
be quite cumbersome.

This cumbersome drop process can be eased by using the «git-ime» command in the imediff
package. It automatically splits a single commit with many files into multiple commits involving only a
single file changes. Now you can drop such files using «git rebase -i» interactively.

Подсказка

The «git-ime» operating on a single file change commit splits it into multiple
commits of line changes using imediff interactively. Invoking this with the --auto
option will automate this split commit operation. See git-ime(1) and imediff(1).

12.12 Quasi-native Debian packaging
The quasi-native packaging scheme packages a source without the real upstream tarball using the non-
native package format.

Подсказка

Some people promote this quasi-native packaging scheme even for programs
written only for Debian since it helps to ease communication with the downstream
distros such as Ubuntu for bug fixes etc.

This quasi-native packaging scheme involves 2 preparation steps:

77

https://honk.sigxcpu.org/projects/git-buildpackage/manual-html/gbp.html
https://raphaelhertzog.com/2010/11/18/4-tips-to-maintain-a-3ZZZZ-0-quilt-debian-source-package-in-a-vcs/
https://salsa.debian.org/systemd-team/systemd/-/blob/debian/master/debian/README.source

ГЛАВА 12. PACKAGING WITH GIT 12.13. PATCH APPLIED GIT REPOSITORY

• Organize its source tree almost like native Debian package (see «Раздел 6.4») with debian/* files
with a few exceptions:

– Make debian/source/format to contain «3.0 (quilt)» instead of «3.0 (native)» .
– Make debian/changelog to contain version-revision instead of version .

• Generate missing upstream tarball preferably without debian/* files.

– For Debian source format «3.0 (quilt)», removal of files under debian/ directory is an optional
action.

The rest is the same as the non-native packaging workflow as written in «Раздел 6.1».
Although this can be done in many ways, you can use the Git repository and «git deborig» as:

[~] $ cd /path/to/debhello
[debhello] $ dch -r
... set its <version>-<revision>, e.g., 1.0-1

[debhello] $ git tag -s debian/1.0-1
[debhello] $ git rm -rf debian
[debhello] $ git tag -s upstream/1.0
[debhello] $ git commit -m upstream/1.0
[debhello] $ git reset --hard HEAD^
[debhello] $ git deborig
[debhello] $ sbuild

12.13 Patch applied Git repository

Замечание

The focus of this introductory tutorial «Guide for Debian Maintainers» isn’t the
patch applied Git repository which is rather a new trend initiated by the proponent
of the dgit command. So minimal explanation is given here.

The patch applied Git repository can be summarized as:

• The source tree matches extracted contents by «dpkg-source -x» of the Debian source package.

– The source tree is buildable and the same as what NMU maintainers see.
– The source is recorded in the Git repository with maintainer changes including the debian/

directory.
– Maintainer changes to the upstream source are also recorded in debian/patches/* files for

the Debian source format «3.0 (quilt)».

12.14 Note on dgit
The dgit command is provided by the dgit package.

• This command enables to access the Debian package repository as if it were a git remote repository.

• This command offers tools to manage Debian packaging activities mainly using «Раздел 12.13».

– No more convoluted operations to manage patch files in the debian/patches directory.

• Use «dgit build-source» or «dgit sbuild» to build the Debian source-only or source+binary package.

• Use «dgit push-source» or «dgit push-build» for uploading the Debian source-only or source+binary
package via the dgit server.

78

https://www.debian.org/doc/manuals/debmake-doc/

ГЛАВА 12. PACKAGING WITH GIT 12.14. NOTE ON DGIT

• Use git-deborig(1) to produce Debian package.orig.tar.xz from the upstream version in debian/changelog.

Подсказка

The dgit server is browsable at https://browse.dgit.debian.org/ site.

Замечание

In order to keep the working tree dgit-compatible, delete debian/source/local-
options and debian/source/local-patch-header if they exist.

Hints for workflow styles:

• dgit-maint-merge(7) workflow.

– Use this for the Debian non-native package without granular topic patches recorded in the
Debian source package.

* Good enough for packages only with trivial modifications to the upstream.
* Only choice for packages with intertwined modification histories to the upstream.

– Add auto-commit and single-debian-patch lines in the debian/source/options file
* No granular topic patches recorded inside of the Debian source package.

– Use «git checkout upstream; git pull» to pull the new upstream commit and use «git checkout
master ; git merge <new-version-tag>» to merge it to the master branch.

– See «Раздел 5.12» for example.

• dgit-maint-debrebase(7) workflow.

– Use this for the Debian non-native package with granular topic patches recorded in the Debian
source package.

– Use the git-debrebase(1) command to maintain series of Debian changes to upstream source.

• dgit-maint-native(7) workflow,

– Use this for the Debian native package in the Debian Git repository. (No maintainer changes)

• dgit-maint-gbp(7) workflow

– Use this for the Debian non-native package using source format «3.0 (quilt)» with its Debian
Git repository which had been using gbp-buildpackage(1) with «Раздел 12.5».

This author likes this new dgit command and just started to use it with dgit-maint-merge(7) and
dgit-maint-native(7) workflows. Thus, topics around dgit are beyond this tutorial document to cover in
depth. Please start reading the latest relevant manpages and upstream resources:

• «dgit: use the Debian archive as a git remote (2015)»

• «tag2upload (2023)»

79

https://browse.dgit.debian.org/
https://www.chiark.greenend.org.uk/~ijackson/2015/debconf-dgit-talk/slides.pdf
https://wiki.debian.org/DebianEvents/gb/2023/MiniDebConfCambridge/Jackson?action=AttachFile&do=get&target=slides.pdf

Глава 13

Полезные советы

Please also read insightful pages linked from «Notes on Debian» by Russ Allbery (long time Debian
developer) which have best practices for advanced packaging topics.

13.1 Сборка с использованием кодировки UTF-8
Локалью по умолчанию в сборочном окружении является C.

Некоторые программы, такие как функци read из Python3, изменяют своё поведение в зависи-
мости от текущей локали.

Adding the following code to the debian/rules file ensures building the program under the C.UTF-8
locale.

LC_ALL := C.UTF-8
export LC_ALL

13.2 Преобразование в кодировку UTF-8
If upstream documents are encoded in old encoding schemes, converting them to UTF-8 is a good idea.

Use the iconv command in the libc-bin package to convert the encoding of plain text files.

[debhello] $ iconv -f latin1 -t utf8 foo_in.txt > foo_out.txt

Используйте w3m(1) для преобразования HTML-файлов в обычные текстовые файлы в коди-
ровке UTF-8. При выполнении преобразования убедитесь, что у вас используется локаль UTF-8.

[debhello] $ LC_ALL=C.UTF-8 w3m -o display_charset=UTF-8 \
-cols 70 -dump -no-graph -T text/html \
< foo_in.html > foo_out.txt

Запустите эти сценарии в цели override_dh_* файла debian/rules.

13.3 Hints for Debugging
Когда вы сталкиваетесь с проблемами сборки или дампом памяти созданных двоичных программ,
вам необходимо разрешить их самостоятельно. Это называется отладкой.

Это слишком обширная тема, чтобы обсуждать её в настоящем руководстве. Поэтому позволь-
те просто привести несколько ссылок и полезных советов по использованию типичных инструмен-
тов отладки.

• Wikipedia: «core dump»

– «man core»
– Update the «/etc/security/limits.conf» file to include the following:

80

https://www.eyrie.org/~eagle/notes/debian/
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Core_dump

ГЛАВА 13. ПОЛЕЗНЫЕ СОВЕТЫ 13.3. HINTS FOR DEBUGGING

* soft core unlimited

– «ulimit -c unlimited» in ~/.bashrc
– «ulimit -a» to check
– Press Ctrl-\ or «kill -ABRT ’PID’» to make a core dump file

• gdb — отладчик GNU

– «info gdb»
– «Debugging with GDB» in /usr/share/doc/gdb-doc/html/gdb/index.html

• strace — трассировка системных вызовов и сигналов

– Используйте сценарий strace-graph из каталога /usr/share/doc/strace/examples/, чтобы
иметь удобную визуализацию в виде дерева

– «man strace»

• ltrace - трассировка библиотечных вызовов

– «man ltrace»

• «sh -n script.sh» - Syntax check of a Shell script

• «sh -x script.sh» - Trace a Shell script

• «python3 -m py_compile script.py» - Syntax check of a Python script

• «python3 -mtrace --trace script.py» - Trace a Python script

• «perl -I ../libpath -c script.pl» - Syntax check of a Perl script

• «perl -d:Trace script.pl» - Trace a Perl script

– Install the libterm-readline-gnu-perl package or its equivalent to add input line editing capability
with history support.

• lsof — вывод списка файлов, открытых процессами

– «man lsof»

Подсказка

The script command records console outputs.

Подсказка

The screen and tmux commands used with the ssh command offer secure and
robust remote connection terminals.

Подсказка

A Python- and Shell-like REPL (=READ + EVAL + PRINT + LOOP) environment
for Perl is offered by the reply command from the libreply-perl (new) package
and the re.pl command from the libdevel-repl-perl (old) package.

81

ГЛАВА 13. ПОЛЕЗНЫЕ СОВЕТЫ 13.3. HINTS FOR DEBUGGING

Подсказка

The rlwrap and rlfe commands add input line editing capability with history
support to any interactive commands. E.g. «rlwrap dash -i’» .

82

Глава 14

Tool usages

Here are some notable tools around Debian packaging.

Замечание

The descriptions in this section are intentionally brief. Prospective maintainers are
strongly encouraged to search for and read all relevant documentation associated
with these commands.

Замечание

Examples here use the gz-compression. The xz-compression may be used
instead.

14.1 debdiff
Можно сравнивать содержимое файлов в двух пакетах Debian с исходным кодом с помощью ко-
манды debdiff.
[base_dir] $ debdiff old-package.dsc new-package.dsc

Также можно сравнивать списки файлов в двух наборах двоичных пакетов Debian с помощью
команды debdiff.
[base_dir] $ debdiff old-package.changes new-package.changes

Это полезно для определения изменений в пакетах с исходным кодом и для проверки на пред-
мет нечаянных изменений, привнесённых при обновлении двоичных пакетов, таких как непредна-
меренное ошибочное размещение или удаление файлов.

Debian now enforces the source-only upload when developing packages. So there may be 2 different
*.changes files:

• package_version-revision_source.changes for the normal source-only upload

• package_version-revision_arch.changes for the source+binary upload

14.2 dget
Можно скачать набор файлв для пакета Debian с исходным кодом с помощью команды dget.
[base_dir] $ dget https://www.example.org/path/to/package_version-rev.dsc

83

ГЛАВА 14. TOOL USAGES 14.3. MK-ORIGTARGZ

14.3 mk-origtargz
You can make the upstream tarball ../foo-newversion.tar.[xg]z accessible from the Debian source tree
as ../foo_newversion.orig.tar.[xg]z. This command is useful for renaming and symlinking the upstream
tarball to the expected Debian naming convention.

14.4 origtargz
You can fetch the pre-existing orig tarball of a Debian package from various sources, and unpack it with
origtargz command.

This is basically for -2, -3, … revisions.

Замечание

When the upstream tarball is missing, debmake automatically produces a
required tarball. This is a convenient feature and good enough for making a
private Debian package. But when making a Debian package for the official
Debian repository, you must use exactly the same upstream tarball as the -1
revision. For such case, origtargz should be used.

14.5 git deborig
If the upstream project is hosted in a Git repository without an official tarball release, you can generate
its orig tarball from the git repository for use by the Debian source package. Execute «git deborig» from
the root of the checked-out source tree.

This is basically for -1 revisions.

14.6 dpkg-source -b
The «dpkg-source -b» command packs the upstream source tree into the Debian source package.

It expects a series of patches in the debian/patches/ directory and their application sequence in
debian/patches/series.

It is compatible with dquilt (see «Раздел 4.4») operations and understands the patch application
status from the existence of .pc/applied-patches.

The dpkg-buildpackage command invokes «dpkg-source -b».

14.7 dpkg-source -x
The «dpkg-source -x» command extracts the source tree and applies the patches in the debian/patches/
directory using the sequence specified in debian/patches/series to the upstream source tree. It also
adds .pc/applied-patches. (See «Раздел 12.13».)

The «dpkg-source -x --skip-patches» command extracts source tree only. It doesn’t add .pc/applied-
patches. (See «Раздел 12.5».)

Both extracted source trees are ready for building Debian binary packages with dpkg-buildpackage,
dbuild, sbuild, etc..

14.8 debc
Созданные пакеты следуется установить с помощью команды debc для их локальной проверки.

[base_dir] $ debc package_version-rev_arch.changes

84

ГЛАВА 14. TOOL USAGES 14.9. BTS

14.9 bts
After uploading the package, you will receive bug reports. It is an important duty of a package maintainer
to manage these bugs properly, as described in «5.8. Handling bugs» of the «Debian Developer’s
Reference».

The bts command is a handy tool to manage bugs on the «Debian Bug Tracking System».

[~] $ bts severity 123123 wishlist , tags -1 pending

14.10 dpkg-depcheck
You can use dpkg-depcheck(1) to obtain a good first approximation to the Build-Depends line needed
by a Debian package.

[foo-1.0] $ dpkg-depcheck -b debian/rules build

85

https://www.debian.org/doc/manuals/developers-reference/pkgs.html#bug-handling
https://www.debian.org/Bugs/

Глава 15

Дополнительные примеры

There is an old Latin saying: «fabricando fit faber» («practice makes perfect»).
It is highly recommended to practice and experiment with all the steps of Debian packaging with

simple packages. This chapter provides you with many upstream cases for your practice.
This should also serve as introductory examples for many programming topics.

• Programming in the POSIX shell, Python3, and C.

• Method to create a desktop GUI program launcher with icon graphics.

• Conversion of a command from CLI to GUI.

• Conversion of a program to use gettext for internationalization and localization: POSIX shell and
C sources.

• Overview of many build systems: Makefile, Python, Autotools, and CMake.

Please note that Debian takes a few things seriously:

• Свободное ПО

• Stability and security of OS

• Универсальная операционная система реализуется через

– свободный выбор источников и исходных кодов основной ветки разработки,
– свободный выбор архитектур ЦП, а также
– свободный выбор языка пользовательского интерфейса.

Знакомство с типичным примером работы над пакетом, представленным в «Глава 5», является
предварительным условием для чтения данной главы.

Some details are intentionally left vague in the following sections. Please try to read the pertinent
documentation and practice yourself to find them out.

Подсказка

The best source of a packaging example is the current Debian archive itself.
Please use the «Debian Code Search» service to find pertinent examples.

15.1 Выборочное применение шаблонов
Here is an example of creating a simple Debian package from a zero-content source in an empty directory.

This is a good way to obtain all the template files without cluttering the upstream source tree you are
working on.

Допустим, пустым каталогом будет debhello-0.1.

86

https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Internationalization_and_localization
https://codesearch.debian.net/

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.1. ВЫБОРОЧНОЕ ПРИМЕНЕНИЕ …

[base_dir] $ mkdir debhello-0.1
[base_dir] $ tree
.
+-- debhello-0.1

2 directories, 0 files

Let’s generate the maximum amount of template files.
Let’s also use the «-p debhello -t -x3 -u 0.1 -r 1» options to create the missing upstream tarball with

optional -x3, and -t options.

[base_dir] $ cd debhello-0.1
[debhello-0.1] $ debmake -p debhello -x3 -t -T -u 0.1 -r 1
I: debmake (version: 5.1.2)
...

Проверим созданные шаблонные файлы.

[debhello-0.1] $ cd ..
[base_dir] $ tree
.
+-- debhello-0.1
| +-- debian
| +-- README.Debian
| +-- README.source
| +-- bug-control.ex
| +-- bug-presubj.ex
| +-- bug-script.ex
| +-- changelog
| +-- clean
| +-- conffiles.ex
| +-- control
| +-- copyright
| +-- cron.d.ex
| +-- cron.daily.ex
| +-- cron.hourly.ex
| +-- cron.monthly.ex
| +-- cron.weekly.ex
| +-- default.ex
| +-- dirs
| +-- doc-base.ex
| +-- docs
| +-- emacsen-install.ex
| +-- emacsen-remove.ex
| +-- emacsen-startup.ex
| +-- examples
| +-- gbp.conf
| +-- info.ex
| +-- install
| +-- links
| +-- lintian-overrides.ex
| +-- maintscript.ex
| +-- manpage.1.ex
| +-- manpage.asciidoc.ex
| +-- manpage.md.ex
| +-- manpage.sgml.ex
| +-- manpage.xml.ex
| +-- manpages
| +-- patches
| | +-- series
| +-- postinst.ex
| +-- postrm.ex
| +-- preinst.ex
| +-- prerm.ex

87

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.2. БЕЗ MAKEFILE (КОМАНДНАЯ …

| +-- rules
| +-- salsa-ci.yml
| +-- service.ex
| +-- source
| | +-- format
| | +-- lintian-overrides.ex
| | +-- options.ex
| | +-- patch-header.ex
| +-- tests
| | +-- control
| +-- tmpfile.ex
| +-- upstream
| | +-- metadata
| +-- watch
+-- debhello-0.1.tar.xz
+-- debhello_0.1.orig.tar.xz -> debhello-0.1.tar.xz

7 directories, 53 files

Теперь вы можете скопировать любой из созданных в каталоге debhello-0.1/debian/ шаблонных
файлов в ваш пакет, при необходимости их переименовав.

15.2 Без Makefile (командная оболочка, интерфейс командной
оболочки)

Ниже приводится пример создания простого пакета Debian из программы с интерфесом командной
оболочки, написанной для командной оболочки POSIX и не имеющей системы сборки.

Let’s assume this upstream tarball to be debhello-0.2.tar.xz.
Этот тип исходного кода не имеет средств автоматизации, и файлы должны быть установлены

вручную.
For example:

[base_dir] $ tar --xz -xmf debhello-0.2.tar.xz
[base_dir] $ cd debhello-0.2
[debhello-0.2] $ sudo cp scripts/hello /bin/hello
...

Let’s get this source as tar file from a remote site and make it the Debian package.
Download debhello-0.2.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-0.2.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-0.2.tar.xz
[base_dir] $ tree
.
+-- debhello-0.2
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-0.2.tar.xz

5 directories, 6 files

Итак, сценарий командной оболочки POSIX hello является очень простым.
hello (v=0.2)

[base_dir] $ cat debhello-0.2/scripts/hello
#!/bin/sh -e

88

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.2. БЕЗ MAKEFILE (КОМАНДНАЯ …

echo "Hello from the shell!"
echo ""
echo -n "Type Enter to exit this program: "
read X

Here, hello.desktop supports the «Desktop Entry Specification».
hello.desktop (v=0.2)

[base_dir] $ cat debhello-0.2/data/hello.desktop
[Desktop Entry]
Name=Hello
Name[fr]=Bonjour
Comment=Greetings
Comment[fr]=Salutations
Type=Application
Keywords=hello
Exec=hello
Terminal=true
Icon=hello.png
Categories=Utility;

Here, hello.png is the icon graphics file.
Let’s package this with the debmake command. Here, the -b’:sh’ option is used to specify that the

generated binary package is a shell script.

[base_dir] $ cd debhello-0.2
[debhello-0.2] $ debmake -b':sh' -x1
I: debmake (version: 5.1.2)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-0.2] $ cd ..
I: Non-native Debian package pkg="debhello", ver="0.2", rev="1" method="dir_d...
I: already in the package-version form: "debhello-0.2"
I: [base_dir] $ ln -sf debhello-0.2.tar.xz debhello_0.2.orig.tar.xz
I: [base_dir] $ cd debhello-0.2
I: parsing option -b ":sh"
I: binary package=debhello Type=script / Arch=all M-A=foreign
I: build_type = Unknown
I: ext_type = 1 1 files
I: ext_type = desktop 1 files
I: ext_type = md 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-0.2] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
I: creating debian/source/format from extra0source_format
...

Проверим созданные шаблонные файлы.
Дерево исходного кода после простого выполнения debmake. (v=0.2)

[debhello-0.2] $ cd ..
[base_dir] $ tree
.
+-- debhello-0.2
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- debian
| | +-- README.Debian
| | +-- README.source
| | +-- changelog

89

https://www.freedesktop.org/wiki/Specifications/desktop-entry-spec/

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.2. БЕЗ MAKEFILE (КОМАНДНАЯ …

| | +-- clean
| | +-- control
| | +-- copyright
| | +-- dirs
| | +-- docs
| | +-- examples
| | +-- gbp.conf
| | +-- install
| | +-- links
| | +-- manpages
| | +-- patches
| | | +-- series
| | +-- rules
| | +-- salsa-ci.yml
| | +-- source
| | | +-- format
| | +-- tests
| | | +-- control
| | +-- upstream
| | | +-- metadata
| | +-- watch
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-0.2.tar.xz
+-- debhello_0.2.orig.tar.xz -> debhello-0.2.tar.xz

10 directories, 27 files

debian/rules (шаблонный файл, v=0.2):
[base_dir] $ cd debhello-0.2
[debhello-0.2] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax

90

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.2. БЕЗ MAKEFILE (КОМАНДНАЯ …

%:
dh $@

debmake generated override targets

По сути, это стандартный файл debian/rules, использующий команду dh. Поскольку это пакет
со сценарием, этот шаблонный файл debian/rules не имеет содержимого, связанного с флагом
сборки.

debian/control (шаблонный файл, v=0.2):

[debhello-0.2] $ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.3
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/<project_site>

Package: debhello
Section: unknown
Architecture: all
Multi-Arch: foreign
Depends:
${misc:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.
.
===== This comes from the unmodified template file =====
.
Please edit this template file (debian/control) and other package files
(debian/*) to make them meet all the requirements of the Debian Policy
before uploading this package to the Debian archive.
.
See
* https://www.debian.org/doc/manuals/developers-reference/best-pkging-pract...
* https://www.debian.org/doc/manuals/debmake-doc/ch05.en.html#control
.
The synopsis description at the top should be about 60 characters and
written as a phrase. No extra capital letters or a final period. No
articles b''—b'' "a", "an", or "the".
.
The package description for general-purpose applications should be
written for a less technical user. This means that we should avoid
jargon. GNOME or KDE is fine but GTK+ is probably not.
.
Use the canonical forms of words:
* Use X Window System, X11, or X; not X Windows, X-Windows, or X Window.
* Use GTK+, not GTK or gtk.
* Use GNOME, not Gnome.
* Use PostScript, not Postscript or postscript.

Since this is the shell script package, the debmake command sets «Architecture: all» and «Multi-
Arch: foreign». Also, it sets required substvar parameters as «Depends: ${misc:Depends}». These
are explained in «Глава 6».

Since this upstream source lacks the upstream Makefile, that functionality needs to be provided by
the maintainer. This upstream source contains only a script file and data files and no C source files;
the build process can be skipped but the install process needs to be implemented. For this case, this
is achieved cleanly by adding the debian/install and debian/manpages files without complicating the

91

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.2. БЕЗ MAKEFILE (КОМАНДНАЯ …

debian/rules file.
Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=0.2):

[base_dir] $ cd debhello-0.2
[debhello-0.2] $ vim debian/rules
... hack, hack, hack, ...
[debhello-0.2] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1

%:
dh $@

debian/control (версия сопровождающего, v=0.2):

[debhello-0.2] $ vim debian/control
... hack, hack, hack, ...
[debhello-0.2] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.3
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
${misc:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Внимание

If you leave «Section: unknown» in the template debian/control file unchanged,
the lintian error may cause a build failure.

debian/install (версия сопровождающего, v=0.2):

[debhello-0.2] $ vim debian/install
... hack, hack, hack, ...
[debhello-0.2] $ cat debian/install
data/hello.desktop usr/share/applications
data/hello.png usr/share/pixmaps
scripts/hello usr/bin

debian/manpages (версия сопровождающего, v=0.2):

$ vim debian/manpages
... hack, hack, hack, ...
[debhello-0.2] $ cat debian/manpages
man/hello.1

В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Шаблонные файлы в каталоге debian/. (v=0.2):

92

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.2. БЕЗ MAKEFILE (КОМАНДНАЯ …

[debhello-0.2] $ rm -f debian/clean debian/dirs debian/links
[debhello-0.2] $ rm -f debian/README.source debian/source/*.ex
[debhello-0.2] $ rm -rf debian/patches
[debhello-0.2] $ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- docs
+-- examples
+-- gbp.conf
+-- install
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 15 files

В данном дереве исходного кода вы можете создать неродной пакет Debian с помощью ко-
манды debuild (или её эквивалента). Вывод это команды очень подробен, в нём объясняется, что
происходит, и выглядит это следующим образом.

[base_dir] $ cd debhello-0.2
[debhello-0.2] $ debuild
dpkg-buildpackage -us -uc -ui -i
dpkg-buildpackage: info: source package debhello
dpkg-buildpackage: info: source version 0.2-1
dpkg-buildpackage: info: source distribution unstable
dpkg-buildpackage: info: source changed by Osamu Aoki <osamu@debian.org>
dpkg-source -i --before-build .
dpkg-buildpackage: info: host architecture amd64
debian/rules clean
dh clean

dh_clean
rm -f debian/debhelper-build-stamp

...
debian/rules binary
dh binary

dh_update_autotools_config
dh_autoreconf
create-stamp debian/debhelper-build-stamp
dh_prep

rm -f -- debian/debhello.substvars
rm -fr -- debian/.debhelper/generated/debhello/ debian/debhello/ debi...

dh_auto_install --destdir=debian/debhello/
...
Finished running lintian.

Проверим результат сборки.
Командой debuild были созданы следующие файлы debhello версии 0.2:

[debhello-0.2] $ cd ..
[base_dir] $ tree -FL 1
./
+-- debhello-0.2/
+-- debhello-0.2.tar.xz

93

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.2. БЕЗ MAKEFILE (КОМАНДНАЯ …

+-- debhello_0.2-1.debian.tar.xz
+-- debhello_0.2-1.dsc
+-- debhello_0.2-1_all.deb
+-- debhello_0.2-1_amd64.build
+-- debhello_0.2-1_amd64.buildinfo
+-- debhello_0.2-1_amd64.changes
+-- debhello_0.2.orig.tar.xz -> debhello-0.2.tar.xz

2 directories, 8 files

Вы видите все созданные файлы.

• The debhello_0.2.orig.tar.xz file is a symlink to the upstream tarball.

• The debhello_0.2-1.debian.tar.xz file contains the maintainer generated contents.

• The debhello_0.2-1.dsc file is the meta data file for the Debian source package.

• The debhello_0.2-1_all.deb file is the Debian binary package.

• The debhello_0.2-1_amd64.build file is the build log file.

• The debhello_0.2-1_amd64.buildinfo file is the meta data file generated by dpkg-genbuildinfo(1).

• The debhello_0.2-1_amd64.changes file is the meta data file for the Debian binary package.

The debhello_0.2-1.debian.tar.xz file contains the Debian changes to the upstream source as follows.
Сжатое содержимое архива debhello_0.2-1.debian.tar.xz:

[base_dir] $ tar --xz -tf debhello-0.2.tar.xz
debhello-0.2/
debhello-0.2/data/
debhello-0.2/data/hello.desktop
debhello-0.2/data/hello.png
debhello-0.2/man/
debhello-0.2/man/hello.1
debhello-0.2/scripts/
debhello-0.2/scripts/hello
debhello-0.2/README.md
[base_dir] $ tar --xz -tf debhello_0.2-1.debian.tar.xz
debian/
debian/README.Debian
debian/changelog
debian/control
debian/copyright
debian/docs
debian/examples
debian/gbp.conf
debian/install
debian/manpages
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

The debhello_0.2-1_amd64.deb file contains the files to be installed as follows.
The binary package contents of debhello_0.2-1_all.deb:

[base_dir] $ dpkg -c debhello_0.2-1_all.deb
drwxr-xr-x root/root/
drwxr-xr-x root/root/usr/

94

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.3. MAKEFILE (КОМАНДНАЯ ОБОЛОЧКА, …

drwxr-xr-x root/root/usr/bin/
-rwxr-xr-x root/root/usr/bin/hello
drwxr-xr-x root/root/usr/share/
drwxr-xr-x root/root/usr/share/applications/
-rw-r--r-- root/root/usr/share/applications/hello.desktop
drwxr-xr-x root/root/usr/share/doc/
drwxr-xr-x root/root/usr/share/doc/debhello/
-rw-r--r-- root/root/usr/share/doc/debhello/README.Debian
-rw-r--r-- root/root/usr/share/doc/debhello/changelog.Debian.gz
-rw-r--r-- root/root/usr/share/doc/debhello/copyright
drwxr-xr-x root/root/usr/share/man/
drwxr-xr-x root/root/usr/share/man/man1/
-rw-r--r-- root/root/usr/share/man/man1/hello.1.gz
drwxr-xr-x root/root/usr/share/pixmaps/
-rw-r--r-- root/root/usr/share/pixmaps/hello.png

Here is the generated dependency list of debhello_0.2-1_all.deb.
The generated dependency list of debhello_0.2-1_all.deb:

[debhello-0.2] $ dpkg -f debhello_0.2-1_all.deb pre-depends \
depends recommends conflicts breaks

(No extra dependency packages required since this is a POSIX shell program.)

Замечание

If you wish to replace upstream provided PNG file data/hello.png with maintainer
provided one debian/hello.png, editing debian/install isn’t enough. When
you add debian/hello.png, you need to add a line «include-binaries» to
debian/source/options since PNG is a binary file. See dpkg-source(1).

/tep200.slog/ vim:set filetype=asciidoc:

15.3 Makefile (командная оболочка, интерфейс командной обо-
лочки)

Ниже приводится пример создания простого пакета Debian из программы с интерфесом командной
оболочки, написанной для командной оболочки POSIX и использующей в качестве системы сборки
Makefile.

Let’s assume its upstream tarball to be debhello-1.0.tar.xz.
Предполагается, что этот тип исходного кода будет установлен как несистемный файл:

[base_dir] $ tar --xz -xmf debhello-1.0.tar.xz
[base_dir] $ cd debhello-1.0
[debhello-1.0] $ make install

Debian packaging requires changing this «make install» process to install files to the target system
image location instead of the normal location under /usr/local.

Получитм исходный код и создадим пакет Debian.
Download debhello-1.0.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.0.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-1.0.tar.xz
[base_dir] $ tree
.
+-- debhello-1.0
| +-- Makefile
| +-- README.md
| +-- data
| | +-- hello.desktop

95

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.3. MAKEFILE (КОМАНДНАЯ ОБОЛОЧКА, …

| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-1.0.tar.xz

5 directories, 7 files

Here, the Makefile uses $(DESTDIR) and $(prefix) properly. All other files are the same as in «Раз-
дел 15.2» and most of the packaging activities are the same.

Makefile (v=1.0)

[base_dir] $ cat debhello-1.0/Makefile
prefix = /usr/local

all:
: # do nothing

install:
install -D scripts/hello \

$(DESTDIR)$(prefix)/bin/hello
install -m 644 -D data/hello.desktop \

$(DESTDIR)$(prefix)/share/applications/hello.desktop
install -m 644 -D data/hello.png \

$(DESTDIR)$(prefix)/share/pixmaps/hello.png
install -m 644 -D man/hello.1 \

$(DESTDIR)$(prefix)/share/man/man1/hello.1

clean:
: # do nothing

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/man1/hello.1

.PHONY: all install clean distclean uninstall

Let’s package this with the debmake command. Here, the -b’:sh’ option is used to specify that the
generated binary package is a shell script.

[base_dir] $ cd debhello-1.0
[debhello-1.0] $ debmake -b':sh' -x1
I: debmake (version: 5.1.2)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.0] $ cd ..
I: Non-native Debian package pkg="debhello", ver="1.0", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.0"
I: [base_dir] $ ln -sf debhello-1.0.tar.xz debhello_1.0.orig.tar.xz
I: [base_dir] $ cd debhello-1.0
I: parsing option -b ":sh"
I: binary package=debhello Type=script / Arch=all M-A=foreign
I: build_type = make
I: ext_type = 1 1 files
I: ext_type = desktop 1 files
I: ext_type = md 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-1.0] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py

96

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.3. MAKEFILE (КОМАНДНАЯ ОБОЛОЧКА, …

I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
I: creating debian/source/format from extra0source_format
...

Let’s inspect the notable template files generated.
debian/rules (шаблонный файл, v=1.0):

[base_dir] $ cd debhello-1.0
[debhello-1.0] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax
%:

dh $@

debmake generated override targets
Use "make prefix=/usr" (override prefix=/usr/local in Makefile)
#override_dh_auto_install:
dh_auto_install -- prefix=/usr

Do not install python .pyc .pyo if they exist
#override_dh_install:
dh_install --list-missing -X.pyc -X.pyo

Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=1.0):

[base_dir] $ cd debhello-1.0
[debhello-1.0] $ vim debian/rules
... hack, hack, hack, ...
[debhello-1.0] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1

%:
dh $@

97

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.4. PYPROJECT.TOML (PYTHON3, CLI)

override_dh_auto_install:
dh_auto_install -- prefix=/usr

Since this upstream source has the proper upstream Makefile, there is no need to create debian/install
and debian/manpages files.

Файл debian/control в точности совпадает с тем же файлом из случая «Раздел 15.2».
В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Шаблонные файлы в каталоге debian/. (v=1.0):

[debhello-1.0] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-1.0] $ rm -f debian/README.source debian/source/*.ex
[debhello-1.0] $ rm -rf debian/patches
[debhello-1.0] $ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- docs
+-- examples
+-- gbp.conf
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 14 files

The rest of the packaging activities are practically the same as the ones in «Раздел 15.2».

15.4 pyproject.toml (Python3, CLI)
Here is an example of creating a simple Debian package from a Python3 CLI program using pyproject.toml.

Получитм исходный код и создадим пакет Debian.
Download debhello-1.1.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.1.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-1.1.tar.xz
[base_dir] $ tree
.
+-- debhello-1.1
| +-- LICENSE
| +-- MANIFEST.in
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- manpages
| | +-- hello.1
| +-- pyproject.toml
| +-- src
| +-- debhello
| +-- __init__.py
| +-- main.py
+-- debhello-1.1.tar.xz

98

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.4. PYPROJECT.TOML (PYTHON3, CLI)

6 directories, 10 files

Here, the content of this debhello source tree as follows.
pyproject.toml (v=1.1) — PEP 517 configuration

[base_dir] $ cat debhello-1.1/pyproject.toml
[build-system]
requires = ["setuptools >= 61.0"] # REQUIRED if [build-system] table is used...
build-backend = "setuptools.build_meta" # If not defined, then legacy behavi...

[project]
name = "debhello"
version = "1.1.0"
description = "Hello Python (CLI)"
readme = {file = "README.md", content-type = "text/markdown"}
requires-python = ">=3.12"
license = "MIT"
keywords = ["debhello"]
authors = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
maintainers = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",

"Topic :: System :: Archiving :: Packaging",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",
Others
"Operating System :: POSIX :: Linux",
"Natural Language :: English",

]
[project.urls]
"Homepage" = "https://salsa.debian.org/debian/debmake"
"Bug Reports" = "https://salsa.debian.org/debian/debmake/issues"
"Source" = "https://salsa.debian.org/debian/debmake"
[project.scripts]
hello = "debhello.main:main"
[tool.setuptools]
package-dir = {"" = "src"}
packages = ["debhello"]
include-package-data = true

MANIFEST.in (v=1.1) — for tar-ball.

[base_dir] $ cat debhello-1.1/MANIFEST.in
include data/*
include manpages/*

src/debhello/__init__.py (v=1.1)

[base_dir] $ cat debhello-1.1/src/debhello/__init__.py
"""
debhello program (CLI)
"""

src/debhello/main.py (v=1.1) — command entry point

[base_dir] $ cat debhello-1.1/src/debhello/main.py
"""
debhello program
"""

99

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.4. PYPROJECT.TOML (PYTHON3, CLI)

import sys

__version__ = '1.1.0'

def main(): # needed for console script
print(' ========== Hello Python3 ==========')
print('argv = {}'.format(sys.argv))
print('version = {}'.format(debhello.__version__))
return

if __name__ == "__main__":
sys.exit(main())

Let’s package this with the debmake command. Here, the -b’:py3’ option is used to specify the
generated binary package containing Python3 script and module files.

[base_dir] $ cd debhello-1.1
[debhello-1.1] $ debmake -b':py3' -x1
I: debmake (version: 5.1.2)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.1] $ cd ..
I: Non-native Debian package pkg="debhello", ver="1.1", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.1"
I: [base_dir] $ ln -sf debhello-1.1.tar.xz debhello_1.1.orig.tar.xz
I: [base_dir] $ cd debhello-1.1
I: parsing option -b ":py3"
I: binary package=debhello Type=python3 / Arch=all M-A=foreign
W: setuptools build system.
I: build_type = Python (pyproject.toml: PEP-518, PEP-621, PEP-660)
I: ext_type = python3 2 files
I: ext_type = 1 1 files
I: ext_type = desktop 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-1.1] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
...

Let’s inspect the notable template files generated.
debian/rules (шаблонный файл, v=1.1):

[base_dir] $ cd debhello-1.1
[debhello-1.1] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:

100

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.4. PYPROJECT.TOML (PYTHON3, CLI)

#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax
%:

dh $@ --with python3 --buildsystem=pybuild

debmake generated override targets
Too complicated to provide examples here.
#
Check situation of Python on Debian
https://wiki.debian.org/Python
#
https://wiki.debian.org/Python/TransitionToDHPython2
https://wiki.debian.org/Python/Pybuild
https://wiki.debian.org/Python/LibraryStyleGuide
#
If a module package doesn't use distutils or setuptools but uses flit
you need flit plugin. See pybuild(1).
#
Pure PEP-517 based build with "python3 -m build ..." is supported.
#
To update the upstream source to support python3, see
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/PortingToPy3k/BilingualQuickRef

По сути, это стандартный файл debian/rules, использующий команду dh.
The use of the «--with python3» option invokes dh_python3 to calculate Python dependencies, add

maintainer scripts to byte compiled files, etc. See dh_python3(1).
The use of the «--buildsystem=pybuild» option invokes various build systems for requested Python

versions in order to build modules and extensions. See pybuild(1).
debian/control (шаблонный файл, v=1.1):

[debhello-1.1] $ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
dh-python,
pybuild-plugin-pyproject,
python3-all,
python3-setuptools,
Standards-Version: 4.7.3
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/<project_site>

Package: debhello
Section: unknown
Architecture: all
Multi-Arch: foreign
Depends:

101

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.4. PYPROJECT.TOML (PYTHON3, CLI)

${misc:Depends},
${python3:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.
.
===== This comes from the unmodified template file =====
.
Please edit this template file (debian/control) and other package files
(debian/*) to make them meet all the requirements of the Debian Policy
before uploading this package to the Debian archive.
.
See
* https://www.debian.org/doc/manuals/developers-reference/best-pkging-pract...
* https://www.debian.org/doc/manuals/debmake-doc/ch05.en.html#control
.
The synopsis description at the top should be about 60 characters and
written as a phrase. No extra capital letters or a final period. No
articles b''—b'' "a", "an", or "the".
.
The package description for general-purpose applications should be
written for a less technical user. This means that we should avoid
jargon. GNOME or KDE is fine but GTK+ is probably not.
.
Use the canonical forms of words:
* Use X Window System, X11, or X; not X Windows, X-Windows, or X Window.
* Use GTK+, not GTK or gtk.
* Use GNOME, not Gnome.
* Use PostScript, not Postscript or postscript.

Since this is the Python3 package, the debmake command sets «Architecture: all» and «Multi-
Arch: foreign». Also, it sets required substvar parameters as «Depends: ${python3:Depends}, ${misc:Depends}».
These are explained in «Глава 6».

Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=1.1):

[base_dir] $ cd debhello-1.1
[debhello-1.1] $ vim debian/rules
... hack, hack, hack, ...
[debhello-1.1] $ cat debian/rules
#!/usr/bin/make -f
export PYBUILD_NAME=debhello
export PYBUILD_VERBOSE=1
export DH_VERBOSE=1

%:
dh $@ --with python3 --buildsystem=pybuild

debian/control (версия сопровождающего, v=1.1):
[debhello-1.1] $ vim debian/control
... hack, hack, hack, ...
[debhello-1.1] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
pybuild-plugin-pyproject,
python3-all,
Standards-Version: 4.7.3
Rules-Requires-Root: no
Vcs-Browser: https://salsa.debian.org/debian/debmake-doc
Vcs-Git: https://salsa.debian.org/debian/debmake-doc.git

102

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.4. PYPROJECT.TOML (PYTHON3, CLI)

Homepage: https://salsa.debian.org/debian/debmake-doc

Package: debhello
Architecture: all
Depends:
${misc:Depends},
${python3:Depends},
Description: Simple packaging example for debmake
This is an example package to demonstrate Debian packaging using
the debmake command.
.
The generated Debian package uses the dh command offered by the
debhelper package and the dpkg source format `3.0 (quilt)'.

В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
This debhello command comes with the upstream-provided manpage and desktop file but the upstream

pyproject.toml doesn’t install them. So you need to update debian/install and debian/manpages as
follows:

debian/install (maintainer version, v=1.1):

[debhello-1.1] $ vim debian/copyright
... hack, hack, hack, ...
[debhello-1.1] $ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2024 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

debian/manpages (maintainer version, v=1.1):

[debhello-1.1] $ vim debian/install
... hack, hack, hack, ...
[debhello-1.1] $ cat debian/install
data/hello.desktop usr/share/applications
data/hello.png usr/share/pixmaps

The rest of the packaging activities are practically the same as the ones in «Раздел 15.3».
Шаблонные файл в каталоге debian/. (v=1.1):

[debhello-1.1] $ rm -f debian/clean debian/dirs debian/links
[debhello-1.1] $ rm -f debian/README.source debian/source/*.ex
[debhello-1.1] $ rm -rf debian/patches
[debhello-1.1] $ tree -F debian
debian/

103

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.5. MAKEFILE (КОМАНДНАЯ ОБОЛОЧКА, …

+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- docs
+-- examples
+-- gbp.conf
+-- install
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 15 files

Here is the generated dependency list of debhello_1.1-1_all.deb.
The generated dependency list of debhello_1.1-1_all.deb:

[debhello-1.1] $ dpkg -f debhello_1.1-1_all.deb pre-depends \
depends recommends conflicts breaks

Depends: python3:any

15.5 Makefile (командная оболочка, графический интерфейс поль-
зователя)

Ниже приводится пример создания простого пакета Debian из программы с графическим интер-
фейсом пользователя, написанной для командной оболочки POSIX и использующей в качестве
системы сборки Makefile.

This upstream is based on «Раздел 15.3» with enhanced GUI support.
Let’s assume its upstream tarball to be debhello-1.2.tar.xz.
Получитм исходный код и создадим пакет Debian.
Download debhello-1.2.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.2.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-1.2.tar.xz
[base_dir] $ tree
.
+-- debhello-1.2
| +-- Makefile
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- scripts
| +-- hello
+-- debhello-1.2.tar.xz

5 directories, 7 files

Итак, сценарий hello был переписан таким образом, чтобы для создания графического интер-
фейса пользователя на основе GTK+ использовалась команда zenity.

hello (v=1.2)

104

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.5. MAKEFILE (КОМАНДНАЯ ОБОЛОЧКА, …

[base_dir] $ cat debhello-1.2/scripts/hello
#!/bin/sh -e
zenity --info --title "hello" --text "Hello from the shell!"

Файл desktop должен быть обновлён и должен содержать строку Terminal=false, поскольку эта
программа имеет графический интерфейс.

hello.desktop (v=1.2)

[base_dir] $ cat debhello-1.2/data/hello.desktop
[Desktop Entry]
Name=Hello
Name[fr]=Bonjour
Comment=Greetings
Comment[fr]=Salutations
Type=Application
Keywords=hello
Exec=hello
Terminal=false
Icon=hello.png
Categories=Utility;

All other files are the same as in «Раздел 15.3».
Let’s package this with the debmake command. Here, the «-b’:sh’» option is used to specify that the

generated binary package is a shell script.

[base_dir] $ cd debhello-1.2
[debhello-1.2] $ debmake -b':sh' -x1
I: debmake (version: 5.1.2)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.2] $ cd ..
I: Non-native Debian package pkg="debhello", ver="1.2", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.2"
I: [base_dir] $ ln -sf debhello-1.2.tar.xz debhello_1.2.orig.tar.xz
I: [base_dir] $ cd debhello-1.2
I: parsing option -b ":sh"
I: binary package=debhello Type=script / Arch=all M-A=foreign
I: build_type = make
I: ext_type = 1 1 files
I: ext_type = desktop 1 files
I: ext_type = md 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-1.2] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
I: creating debian/source/format from extra0source_format
...

Let’s inspect the notable template files generated.
debian/control (шаблонный файл, v=1.2):

[debhello-1.2] $ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.3
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git

105

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.5. MAKEFILE (КОМАНДНАЯ ОБОЛОЧКА, …

#Vcs-Browser: https://salsa.debian.org/debian/<project_site>

Package: debhello
Section: unknown
Architecture: all
Multi-Arch: foreign
Depends:
${misc:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.
.
===== This comes from the unmodified template file =====
.
Please edit this template file (debian/control) and other package files
(debian/*) to make them meet all the requirements of the Debian Policy
before uploading this package to the Debian archive.
.
See
* https://www.debian.org/doc/manuals/developers-reference/best-pkging-pract...
* https://www.debian.org/doc/manuals/debmake-doc/ch05.en.html#control
.
The synopsis description at the top should be about 60 characters and
written as a phrase. No extra capital letters or a final period. No
articles b''—b'' "a", "an", or "the".
.
The package description for general-purpose applications should be
written for a less technical user. This means that we should avoid
jargon. GNOME or KDE is fine but GTK+ is probably not.
.
Use the canonical forms of words:
* Use X Window System, X11, or X; not X Windows, X-Windows, or X Window.
* Use GTK+, not GTK or gtk.
* Use GNOME, not Gnome.
* Use PostScript, not Postscript or postscript.

Сделаем этот пакет Debian лучше.
debian/control (версия сопровождающего, v=1.2):

[debhello-1.2] $ vim debian/control
... hack, hack, hack, ...
[debhello-1.2] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.3
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
zenity,
${misc:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Please note the manually added zenity dependency.
Файл debian/rules полностью совпадает с тем же файлом из «Раздел 15.3».
В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.

106

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.6. PYPROJECT.TOML (PYTHON3, GUI)

Шаблонные файлы в каталоге debian/. (v=1.2):
[debhello-1.2] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-1.2] $ rm -f debian/README.source debian/source/*.ex
[debhello-1.2] $ rm -rf debian/patches
[debhello-1.2] $ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- docs
+-- examples
+-- gbp.conf
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 14 files

The rest of the packaging activities are practically the same as in «Раздел 15.3».
Here is the generated dependency list of debhello_1.2-1_all.deb.
The generated dependency list of debhello_1.2-1_all.deb:

[debhello-1.2] $ dpkg -f debhello_1.2-1_all.deb pre-depends \
depends recommends conflicts breaks

Depends: zenity

15.6 pyproject.toml (Python3, GUI)
Here is an example of creating a simple Debian package from a Python3 GUI program using pyproject.toml.

Let’s assume this upstream tarball to be debhello-1.3.tar.xz.
Получитм исходный код и создадим пакет Debian.
Download debhello-1.3.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.3.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-1.3.tar.xz
[base_dir] $ tree
.
+-- debhello-1.3
| +-- LICENSE
| +-- MANIFEST.in
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- manpages
| | +-- hello.1
| +-- pyproject.toml
| +-- src
| +-- debhello
| +-- __init__.py
| +-- main.py
+-- debhello-1.3.tar.xz

107

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.6. PYPROJECT.TOML (PYTHON3, GUI)

6 directories, 10 files

Here, the content of this debhello source tree as follows.
pyproject.toml (v=1.3) — PEP 517 configuration

[base_dir] $ cat debhello-1.3/pyproject.toml
[build-system]
requires = ["setuptools >= 61.0"] # REQUIRED if [build-system] table is used...
build-backend = "setuptools.build_meta" # If not defined, then legacy behavi...

[project]
name = "debhello"
version = "1.3.0"
description = "Hello Python (GUI)"
readme = {file = "README.md", content-type = "text/markdown"}
requires-python = ">=3.12"
license = "MIT"
keywords = ["debhello"]
authors = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
maintainers = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",

"Topic :: System :: Archiving :: Packaging",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",
Others
"Operating System :: POSIX :: Linux",
"Natural Language :: English",

]
[project.urls]
"Homepage" = "https://salsa.debian.org/debian/debmake"
"Bug Reports" = "https://salsa.debian.org/debian/debmake/issues"
"Source" = "https://salsa.debian.org/debian/debmake"
[project.scripts]
hello = "debhello.main:main"
[tool.setuptools]
package-dir = {"" = "src"}
packages = ["debhello"]
include-package-data = true

MANIFEST.in (v=1.3) — for tar-ball.

[base_dir] $ cat debhello-1.3/MANIFEST.in
include data/*
include manpages/*

src/debhello/__init__.py (v=1.3)

[base_dir] $ cat debhello-1.3/src/debhello/__init__.py
"""
debhello program (GUI)
"""

src/debhello/main.py (v=1.3) — command entry point

[base_dir] $ cat debhello-1.3/src/debhello/main.py
#!/usr/bin/python3
from gi.repository import Gtk

__version__ = '1.3.0'

108

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.6. PYPROJECT.TOML (PYTHON3, GUI)

class TopWindow(Gtk.Window):

def __init__(self):
Gtk.Window.__init__(self)
self.title = "Hello World!"
self.counter = 0
self.border_width = 10
self.set_default_size(400, 100)
self.set_position(Gtk.WindowPosition.CENTER)
self.button = Gtk.Button(label="Click me!")
self.button.connect("clicked", self.on_button_clicked)
self.add(self.button)
self.connect("delete-event", self.on_window_destroy)

def on_window_destroy(self, *args):
Gtk.main_quit(*args)

def on_button_clicked(self, widget):
self.counter += 1
widget.set_label("Hello, World!\nClick count = %i" % self.counter)

def main():
window = TopWindow()
window.show_all()
Gtk.main()

if __name__ == '__main__':
main()

Let’s package this with the debmake command. Here, the -b’:py3’ option is used to specify that the
generated binary package contains Python3 script and module files.

[base_dir] $ cd debhello-1.3
[debhello-1.3] $ debmake -b':py3' -x1
I: debmake (version: 5.1.2)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.3] $ cd ..
I: Non-native Debian package pkg="debhello", ver="1.3", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.3"
I: [base_dir] $ ln -sf debhello-1.3.tar.xz debhello_1.3.orig.tar.xz
I: [base_dir] $ cd debhello-1.3
I: parsing option -b ":py3"
I: binary package=debhello Type=python3 / Arch=all M-A=foreign
W: setuptools build system.
I: build_type = Python (pyproject.toml: PEP-518, PEP-621, PEP-660)
I: ext_type = python3 2 files
I: ext_type = 1 1 files
I: ext_type = desktop 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-1.3] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
...

The result is practically the same as in «Раздел 15.4».
Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=1.3):

[base_dir] $ cd debhello-1.3
[debhello-1.3] $ vim debian/rules
... hack, hack, hack, ...

109

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.7. MAKEFILE (SINGLE-BINARY PACKAGE)

[debhello-1.3] $ cat debian/rules
#!/usr/bin/make -f
export PYBUILD_NAME=debhello
export PYBUILD_VERBOSE=1
export DH_VERBOSE=1

%:
dh $@ --with python3 --buildsystem=pybuild

debian/control (версия сопровождающего, v=1.3):

[debhello-1.3] $ vim debian/control
... hack, hack, hack, ...
[debhello-1.3] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
pybuild-plugin-pyproject,
python3-all,
Standards-Version: 4.7.3
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign
Depends:
gir1.2-gtk-3.0,
python3-gi,
${misc:Depends},
${python3:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Please note the manually added python3-gi and gir1.2-gtk-3.0 dependencies.
The rest of the packaging activities are practically the same as in <pyproject>>.
Here is the generated dependency list of debhello_1.3-1_all.deb.
The generated dependency list of debhello_1.3-1_all.deb:

[debhello-1.3] $ dpkg -f debhello_1.3-1_all.deb pre-depends \
depends recommends conflicts breaks

Depends: gir1.2-gtk-3.0, python3-gi, python3:any

15.7 Makefile (single-binary package)
Here is an example of creating a simple Debian package from a simple C source program using the
Makefile as its build system.

Это — пример улучшенного исходного кода основной ветки из «Глава 5». Он содержит страницу
руководства, файл desktop, а также иконку рабочего стола. Кроме того, чтобы этот пример имел
большую практическую ценность, исходный кодкомпануется с внешней библиотекой libm.

Let’s assume this upstream tarball to be debhello-1.4.tar.xz.
Предполагается, что этот тип исходного кода будет установлен как несистемный файл:

[base_dir] $ tar --xz -xmf debhello-1.4.tar.xz
[base_dir] $ cd debhello-1.4
[debhello-1.4] $ make
[debhello-1.4] $ make install

110

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.7. MAKEFILE (SINGLE-BINARY PACKAGE)

Debian packaging requires changing this «make install» process to install files into the target system
image location instead of the normal location under /usr/local.

Получитм исходный код и создадим пакет Debian.
Download debhello-1.4.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.4.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-1.4.tar.xz
[base_dir] $ tree
.
+-- debhello-1.4
| +-- LICENSE
| +-- Makefile
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- src
| +-- config.h
| +-- hello.c
+-- debhello-1.4.tar.xz

5 directories, 9 files

Ниже приводится содержимое этого архива с исходным кодом.
src/hello.c (v=1.4):

[base_dir] $ cat debhello-1.4/src/hello.c
#include "config.h"
#include <math.h>
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
return 0;

}

src/config.h (v=1.4):

[base_dir] $ cat debhello-1.4/Makefile
prefix = /usr/local

all: src/hello

src/hello: src/hello.c
$(CC) $(CPPFLAGS) $(CFLAGS) $(LDFLAGS) -o $@ $^ -lm

install: src/hello
install -D src/hello \

$(DESTDIR)$(prefix)/bin/hello
install -m 644 -D data/hello.desktop \

$(DESTDIR)$(prefix)/share/applications/hello.desktop
install -m 644 -D data/hello.png \

$(DESTDIR)$(prefix)/share/pixmaps/hello.png
install -m 644 -D man/hello.1 \

$(DESTDIR)$(prefix)/share/man/man1/hello.1

clean:
-rm -f src/hello

distclean: clean

111

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.7. MAKEFILE (SINGLE-BINARY PACKAGE)

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/man1/hello.1

.PHONY: all install clean distclean uninstall

Makefile (v=1.4):
[base_dir] $ cat debhello-1.4/src/config.h
#define PACKAGE_AUTHOR "Osamu Aoki"

Заметьте, что этот файл Makefile имеет соответствующую цель install для страницы руковод-
ства, файла desktop и иконки рабочего стола.

Создадим пакет из этого исходного кода с помощью команды debmake.

[base_dir] $ cd debhello-1.4
[debhello-1.4] $ debmake -x1
I: debmake (version: 5.1.2)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.4] $ cd ..
I: Non-native Debian package pkg="debhello", ver="1.4", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.4"
I: [base_dir] $ ln -sf debhello-1.4.tar.xz debhello_1.4.orig.tar.xz
I: [base_dir] $ cd debhello-1.4
I: parsing option -b ""
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: build_type = make
I: ext_type = c 2 files
I: ext_type = 1 1 files
I: ext_type = desktop 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-1.4] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
I: creating debian/source/format from extra0source_format
...

The result is practically the same as in «Раздел 5.6».
Let’s make this Debian package, which is practically the same as in «Раздел 5.7», better as the

maintainer.
If the DEB_BUILD_MAINT_OPTIONS environment variable is not exported in debian/rules, lintian

warns «W: debhello: hardening-no-relro usr/bin/hello» for the linking of libm.
The debian/control file makes it exactly the same as the one in «Раздел 5.7», since the libm library

is always available as a part of libc6 (Priority: required).
В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Шаблонные файлы в каталоге debian/. (v=1.4):

[debhello-1.4] $ rm -f debian/clean debian/dirs debian/links
[debhello-1.4] $ rm -f debian/README.source debian/source/*.ex
[debhello-1.4] $ rm -rf debian/patches
[debhello-1.4] $ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- docs
+-- examples
+-- gbp.conf

112

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.8. MAKEFILE.IN + CONFIGURE …

+-- install
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 15 files

Остальные работы по подготовке пакета практически полностью совпадают с описанными в
«Раздел 5.8».

Here is the generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=1.4):

[debhello-1.4] $ dpkg -f debhello-dbgsym_1.4-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 1.4-1)
[debhello-1.4] $ dpkg -f debhello_1.4-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.34)

15.8 Makefile.in + configure (single-binary package)
Here is an example of creating a simple Debian package from a simple C source program using Makefile.in
and configure as its build system.

This is an enhanced upstream source example for «Раздел 15.7». This also links to an external
library, libm, and this source is configurable using arguments to the configure script, which generates
the Makefile and src/config.h files.

Let’s assume this upstream tarball to be debhello-1.5.tar.xz.
Этот тип исходного кода предполагает установку в виде несистемного файла, например, как

[base_dir] $ tar --xz -xmf debhello-1.5.tar.xz
[base_dir] $ cd debhello-1.5
[debhello-1.5] $./configure --with-math
[debhello-1.5] $ make
[debhello-1.5] $ make install

Получитм исходный код и создадим пакет Debian.
Download debhello-1.5.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.5.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-1.5.tar.xz
[base_dir] $ tree
.
+-- debhello-1.5
| +-- LICENSE
| +-- Makefile.in
| +-- README.md
| +-- configure
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- hello.1
| +-- src
| +-- hello.c

113

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.8. MAKEFILE.IN + CONFIGURE …

+-- debhello-1.5.tar.xz

5 directories, 9 files

Ниже приводится содержимое этого архива с исходным кодом.
src/hello.c (v=1.5):

[base_dir] $ cat debhello-1.5/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
#ifdef WITH_MATH

printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
#else

printf("I can't do MATH!\n");
#endif

return 0;
}

Makefile.in (v=1.5):

[base_dir] $ cat debhello-1.5/Makefile.in
prefix = @prefix@

all: src/hello

src/hello: src/hello.c
$(CC) @VERBOSE@ \

$(CPPFLAGS) \
$(CFLAGS) \
$(LDFLAGS) \
-o $@ $^ \
@LINKLIB@

install: src/hello
install -D src/hello \

$(DESTDIR)$(prefix)/bin/hello
install -m 644 -D data/hello.desktop \

$(DESTDIR)$(prefix)/share/applications/hello.desktop
install -m 644 -D data/hello.png \

$(DESTDIR)$(prefix)/share/pixmaps/hello.png
install -m 644 -D man/hello.1 \

$(DESTDIR)$(prefix)/share/man/man1/hello.1

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/man1/hello.1

.PHONY: all install clean distclean uninstall

configure (v=1.5):

114

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.8. MAKEFILE.IN + CONFIGURE …

[base_dir] $ cat debhello-1.5/configure
#!/bin/sh -e
default values
PREFIX="/usr/local"
VERBOSE=""
WITH_MATH="0"
LINKLIB=""
PACKAGE_AUTHOR="John Doe"

parse arguments
while ["${1}" != ""]; do
VAR="${1%=*}" # Drop suffix =*
VAL="${1#*=}" # Drop prefix *=
case "${VAR}" in
--prefix)
PREFIX="${VAL}"
;;

--verbose|-v)
VERBOSE="-v"
;;

--with-math)
WITH_MATH="1"
LINKLIB="-lm"
;;

--author)
PACKAGE_AUTHOR="${VAL}"
;;

*)
echo "W: Unknown argument: ${1}"

esac
shift

done

setup configured Makefile and src/config.h
sed -e "s,@prefix@,${PREFIX}," \

-e "s,@VERBOSE@,${VERBOSE}," \
-e "s,@LINKLIB@,${LINKLIB}," \
<Makefile.in >Makefile

if ["${WITH_MATH}" = 1]; then
echo "#define WITH_MATH" >src/config.h
else
echo "/* not defined: WITH_MATH */" >src/config.h
fi
echo "#define PACKAGE_AUTHOR \"${PACKAGE_AUTHOR}\"" >>src/config.h

Please note that the configure command replaces strings with @… @ in Makefile.in to produce
Makefile and creates src/config.h.

Создадим пакет из этого исходного кода с помощью команды debmake.

[base_dir] $ cd debhello-1.5
[debhello-1.5] $ debmake -x1
I: debmake (version: 5.1.2)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.5] $ cd ..
I: Non-native Debian package pkg="debhello", ver="1.5", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.5"
I: [base_dir] $ ln -sf debhello-1.5.tar.xz debhello_1.5.orig.tar.xz
I: [base_dir] $ cd debhello-1.5
I: parsing option -b ""
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: build_type = configure
I: ext_type = c 1 files
I: ext_type = 1 1 files
I: ext_type = desktop 1 files

115

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.8. MAKEFILE.IN + CONFIGURE …

I: creating debian/* files with "-x 1" option
I: [debhello-1.5] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
I: creating debian/source/format from extra0source_format
...

Полученный результат похож на то, что описано в «Раздел 5.6», но полностью они не совпа-
дают.

Let’s inspect the notable template files generated.
debian/rules (шаблонный файл, v=1.5):

[base_dir] $ cd debhello-1.5
[debhello-1.5] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
Package maintainers to append CFLAGS
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
Package maintainers to append LDFLAGS
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1
#
With debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax
%:

dh $@

debmake generated override targets

116

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.9. AUTOTOOLS (SINGLE-BINARY PACKAGE)

Multiarch package requires library files to be installed to
/usr/lib/<triplet>/ . If the build system does not support
$(DEB_HOST_MULTIARCH), you may need to override some targets such as
dh_auto_configure or dh_auto_install to use $(DEB_HOST_MULTIARCH) .

Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=1.5):

[base_dir] $ cd debhello-1.5
[debhello-1.5] $ vim debian/rules
... hack, hack, hack, ...
[debhello-1.5] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

override_dh_auto_configure:
dh_auto_configure -- \

--with-math \
--author="Osamu Aoki"

В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Остальные работы по подготовке пакета практически полностью совпадают с описанными в

«Раздел 5.8».

15.9 Autotools (single-binary package)
Here is an example of creating a simple Debian package from a simple C source program using Autotools
= Autoconf and Automake (Makefile.am and configure.ac) as its build system.

This source usually comes with the upstream auto-generated Makefile.in and configure files, too.
This source can be packaged using these files as in «Раздел 15.8» with the help of the autotools-dev
package.

The better alternative is to regenerate these files using the latest Autoconf and Automake packages
if the upstream provided Makefile.am and configure.ac are compatible with the latest version. This is
advantageous for porting to new CPU architectures, etc. This can be automated by using the «--with
autoreconf» option for the dh command.

Let’s assume this upstream tarball to be debhello-1.6.tar.xz.
Этот тип исходного кода предполагает установку в виде несистемного файла, например, как

[base_dir] $ tar --xz -xmf debhello-1.6.tar.xz
[base_dir] $ cd debhello-1.6
[debhello-1.6] $ autoreconf -ivf # optional
[debhello-1.6] $./configure --with-math
[debhello-1.6] $ make
[debhello-1.6] $ make install

Получитм исходный код и создадим пакет Debian.
Download debhello-1.6.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.6.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-1.6.tar.xz
[base_dir] $ tree
.
+-- debhello-1.6
| +-- LICENSE
| +-- Makefile.am
| +-- README.md

117

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.9. AUTOTOOLS (SINGLE-BINARY PACKAGE)

| +-- configure.ac
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- Makefile.am
| | +-- hello.1
| +-- src
| +-- Makefile.am
| +-- hello.c
+-- debhello-1.6.tar.xz

5 directories, 11 files

Ниже приводится содержимое этого архива с исходным кодом.
src/hello.c (v=1.6):

[base_dir] $ cat debhello-1.6/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
#ifdef WITH_MATH

printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
#else

printf("I can't do MATH!\n");
#endif

return 0;
}

Makefile.am (v=1.6):
[base_dir] $ cat debhello-1.6/Makefile.am
SUBDIRS = src man
[base_dir] $ cat debhello-1.6/man/Makefile.am
dist_man_MANS = hello.1
[base_dir] $ cat debhello-1.6/src/Makefile.am
bin_PROGRAMS = hello
hello_SOURCES = hello.c

configure.ac (v=1.6):
[base_dir] $ cat debhello-1.6/configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello],[2.1],[foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])
AM_INIT_AUTOMAKE([foreign])
Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
echo "Add --with-math option functionality to ./configure"
AC_ARG_WITH([math],
[AS_HELP_STRING([--with-math],
[compile with math library @<:@default=yes@:>@])],

[],
[with_math="yes"]
)

118

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.9. AUTOTOOLS (SINGLE-BINARY PACKAGE)

echo "==== withval := \"$withval\""
echo "==== with_math := \"$with_math\""
m4sh if-else construct
AS_IF([test "x$with_math" != "xno"],[
echo "==== Check include: math.h"
AC_CHECK_HEADER(math.h,[],[
AC_MSG_ERROR([Couldn't find math.h.])

])
echo "==== Check library: libm"
AC_SEARCH_LIBS(atan, [m])
#AC_CHECK_LIB(m, atan)
echo "==== Build with LIBS := \"$LIBS\""
AC_DEFINE(WITH_MATH, [1], [Build with the math library])

],[
echo "==== Skip building with math.h."
AH_TEMPLATE(WITH_MATH, [Build without the math library])

])
Checks for programs.
AC_PROG_CC
AC_CONFIG_FILES([Makefile

man/Makefile
src/Makefile])

AC_OUTPUT

Подсказка

Without «foreign» strictness level specified in AM_INIT_AUTOMAKE() as
above, automake defaults to «gnu» strictness level requiring several files in the
top-level directory. See «3.2 Strictness» in the automake document.

Создадим пакет из этого исходного кода с помощью команды debmake.
[base_dir] $ cd debhello-1.6
[debhello-1.6] $ debmake -x1
I: debmake (version: 5.1.2)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.6] $ cd ..
I: Non-native Debian package pkg="debhello", ver="1.6", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.6"
I: [base_dir] $ ln -sf debhello-1.6.tar.xz debhello_1.6.orig.tar.xz
I: [base_dir] $ cd debhello-1.6
I: parsing option -b ""
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: build_type = Autotools with autoreconf
I: ext_type = am 3 files
I: ext_type = c 1 files
I: ext_type = 1 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-1.6] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
I: creating debian/source/format from extra0source_format
...

Получившийся результат похож на то, что было описано в «Раздел 15.8», но не совпадает с
ним в точности.

Let’s inspect the notable template files generated.
debian/rules (шаблонный файл, v=1.6):

119

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.9. AUTOTOOLS (SINGLE-BINARY PACKAGE)

[base_dir] $ cd debhello-1.6
[debhello-1.6] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
Package maintainers to append CFLAGS
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
Package maintainers to append LDFLAGS
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1
#
With debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax
%:

dh $@ --with autoreconf

debmake generated override targets
Set options for ./configure
#CONFIGURE_FLAGS = <options for ./configure>
#overrride_dh_configure:
dh_configure -- $(CONFIGURE_FLAGS)
#
Do not install libtool archive, python .pyc .pyo
#override_dh_install:
dh_install --list-missing -X.la -X.pyc -X.pyo

Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=1.6):

[base_dir] $ cd debhello-1.6
[debhello-1.6] $ vim debian/rules
... hack, hack, hack, ...

120

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.10. CMAKE (SINGLE-BINARY PACKAGE)

[debhello-1.6] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@ --with autoreconf

override_dh_auto_configure:
dh_auto_configure -- \

--with-math

В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Остальные работы по подготовке пакета практически полностью совпадают с описанными в

«Раздел 5.8».

15.10 CMake (single-binary package)
Here is an example of creating a simple Debian package from a simple C source program using CMake
(CMakeLists.txt and some files such as config.h.in) as its build system.

The cmake command generates the Makefile file based on the CMakeLists.txt file and its -D option.
It also configures the file as specified in its configure_file(…) by replacing strings with @… @ and
changing the #cmakedefine … line.

Let’s assume this upstream tarball to be debhello-1.7.tar.xz.
Этот тип исходного кода предполагает установку в виде несистемного файла, например, как

[base_dir] $ tar --xz -xmf debhello-1.7.tar.xz
[base_dir] $ cd debhello-1.7
[debhello-1.7] $ mkdir obj-x86_64-linux-gnu # for out-of-tree build
[debhello-1.7] $ cd obj-x86_64-linux-gnu
[debhello-1.7] $ cmake ..
[debhello-1.7] $ make
[debhello-1.7] $ make install

Получитм исходный код и создадим пакет Debian.
Download debhello-1.7.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.7.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-1.7.tar.xz
[base_dir] $ tree
.
+-- debhello-1.7
| +-- CMakeLists.txt
| +-- LICENSE
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- man
| | +-- CMakeLists.txt
| | +-- hello.1
| +-- src
| +-- CMakeLists.txt
| +-- config.h.in
| +-- hello.c
+-- debhello-1.7.tar.xz

5 directories, 11 files

121

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.10. CMAKE (SINGLE-BINARY PACKAGE)

Ниже приводится содержимое этого архива с исходным кодом.
src/hello.c (v=1.7):

[base_dir] $ cat debhello-1.7/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
#ifdef WITH_MATH

printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
#else

printf("I can't do MATH!\n");
#endif

return 0;
}

src/config.h.in (v=1.7):

[base_dir] $ cat debhello-1.7/src/config.h.in
/* name of the package author */
#define PACKAGE_AUTHOR "@PACKAGE_AUTHOR@"
/* math library support */
#cmakedefine WITH_MATH

CMakeLists.txt (v=1.7):

[base_dir] $ cat debhello-1.7/CMakeLists.txt
cmake_minimum_required(VERSION 3.31)
project(debhello)
set(PACKAGE_AUTHOR "Osamu Aoki")
add_subdirectory(src)
add_subdirectory(man)
[base_dir] $ cat debhello-1.7/man/CMakeLists.txt
install(
FILES ${CMAKE_CURRENT_SOURCE_DIR}/hello.1
DESTINATION share/man/man1

)
[base_dir] $ cat debhello-1.7/src/CMakeLists.txt
Always define HAVE_CONFIG_H
add_definitions(-DHAVE_CONFIG_H)
Interactively define WITH_MATH
option(WITH_MATH "Build with math support" OFF)
#variable_watch(WITH_MATH)
Generate config.h from config.h.in
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/config.h.in"
"${CMAKE_CURRENT_BINARY_DIR}/config.h"

)
include_directories("${CMAKE_CURRENT_BINARY_DIR}")
add_executable(hello hello.c)
install(TARGETS hello
RUNTIME DESTINATION bin

)

Создадим пакет из этого исходного кода с помощью команды debmake.

[base_dir] $ cd debhello-1.7
[debhello-1.7] $ debmake -x1
I: debmake (version: 5.1.2)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.7] $ cd ..

122

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.10. CMAKE (SINGLE-BINARY PACKAGE)

I: Non-native Debian package pkg="debhello", ver="1.7", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.7"
I: [base_dir] $ ln -sf debhello-1.7.tar.xz debhello_1.7.orig.tar.xz
I: [base_dir] $ cd debhello-1.7
I: parsing option -b ""
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: build_type = Cmake
I: ext_type = c 2 files
I: ext_type = 1 1 files
I: ext_type = desktop 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-1.7] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
I: creating debian/rules from extra0_rules
I: creating debian/source/format from extra0source_format
...

Получившийся результат похож на то, что было описано в «Раздел 15.8», но не совпадает с
ним в точности.

Let’s inspect the notable template files generated.
debian/rules (шаблонный файл, v=1.7):

[base_dir] $ cd debhello-1.7
[debhello-1.7] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
Package maintainers to append CFLAGS
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
Package maintainers to append LDFLAGS
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1
#
With debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:

123

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.10. CMAKE (SINGLE-BINARY PACKAGE)

DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax
%:

dh $@

debmake generated override targets
#override_dh_auto_configure:
dh_auto_configure -- \
-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_TARGET_MULTIARCH)"
#
You may need to patch CMakeLists.txt to set the library install path to be:...
#-install(TARGETS <sharedlibname> LIBRARY DESTINATION lib)
#+install(TARGETS <sharedlibname> LIBRARY DESTINATION lib/${CMAKE_LIBRARY_ARC...

Multiarch package requires library files to be installed to
/usr/lib/<triplet>/ . If the build system does not support
$(DEB_HOST_MULTIARCH), you may need to override some targets such as
dh_auto_configure or dh_auto_install to use $(DEB_HOST_MULTIARCH) .

debian/control (шаблонный файл, v=1.7):
[debhello-1.7] $ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
cmake,
Standards-Version: 4.7.3
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/<project_site>

Package: debhello
Section: unknown
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.
.
===== This comes from the unmodified template file =====
.
Please edit this template file (debian/control) and other package files
(debian/*) to make them meet all the requirements of the Debian Policy
before uploading this package to the Debian archive.
.
See
* https://www.debian.org/doc/manuals/developers-reference/best-pkging-pract...
* https://www.debian.org/doc/manuals/debmake-doc/ch05.en.html#control
.
The synopsis description at the top should be about 60 characters and
written as a phrase. No extra capital letters or a final period. No
articles b''—b'' "a", "an", or "the".
.
The package description for general-purpose applications should be

124

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

written for a less technical user. This means that we should avoid
jargon. GNOME or KDE is fine but GTK+ is probably not.
.
Use the canonical forms of words:
* Use X Window System, X11, or X; not X Windows, X-Windows, or X Window.
* Use GTK+, not GTK or gtk.
* Use GNOME, not Gnome.
* Use PostScript, not Postscript or postscript.

Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=1.7):

[base_dir] $ cd debhello-1.7
[debhello-1.7] $ vim debian/rules
... hack, hack, hack, ...
[debhello-1.7] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@

override_dh_auto_configure:
dh_auto_configure -- -DWITH-MATH=1

debian/control (версия сопровждающего, v=1.7):

[debhello-1.7] $ vim debian/control
... hack, hack, hack, ...
[debhello-1.7] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
cmake,
Standards-Version: 4.7.3
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Остальные работы по подготовке пакета практически полностью совпадают с описанными в

«Раздел 15.8».

15.11 Autotools (multi-binary package)
Here is an example of creating a set of Debian binary packages including the executable package, the
shared library package, the development file package, and the debug symbol package from a simple C

125

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

source program using Autotools (Autoconf and Automake, which use Makefile.am and configure.ac as
their input files) as its build system.

Let’s package this in a similar way to «Раздел 15.9».
Let’s assume this upstream tarball to be debhello-2.0.tar.xz.
Этот тип исходного кода предполагает установку в виде несистемного файла, например, как

[base_dir] $ tar --xz -xmf debhello-2.0.tar.xz
[base_dir] $ cd debhello-2.0
[debhello-2.0] $ autoreconf -ivf # optional
[debhello-2.0] $./configure --with-math
[debhello-2.0] $ make
[debhello-2.0] $ make install

Получитм исходный код и создадим пакет Debian.
Download debhello-2.0.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-2.0.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-2.0.tar.xz
[base_dir] $ tree
.
+-- debhello-2.0
| +-- LICENSE
| +-- Makefile.am
| +-- README.md
| +-- configure.ac
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- lib
| | +-- Makefile.am
| | +-- sharedlib.c
| | +-- sharedlib.h
| +-- man
| | +-- Makefile.am
| | +-- hello.1
| +-- src
| +-- Makefile.am
| +-- hello.c
+-- debhello-2.0.tar.xz

6 directories, 14 files

Ниже приводится содержимое этого архива с исходным кодом.
src/hello.c (v=2.0):

[base_dir] $ cat debhello-2.0/src/hello.c
#include "config.h"
#include <stdio.h>
#include <sharedlib.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
sharedlib();
return 0;

}

lib/sharedlib.h и lib/sharedlib.c (v=1.6):

[base_dir] $ cat debhello-2.0/lib/sharedlib.h
int sharedlib();
[base_dir] $ cat debhello-2.0/lib/sharedlib.c
#include <stdio.h>
int

126

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

sharedlib()
{

printf("This is a shared library!\n");
return 0;

}

Makefile.am (v=2.0):

[base_dir] $ cat debhello-2.0/Makefile.am
recursively process `Makefile.am` in SUBDIRS
SUBDIRS = lib src man
[base_dir] $ cat debhello-2.0/man/Makefile.am
manpages (distributed in the source package)
dist_man_MANS = hello.1
[base_dir] $ cat debhello-2.0/lib/Makefile.am
libtool librares to be produced
lib_LTLIBRARIES = libsharedlib.la

source files used for lib_LTLIBRARIES
libsharedlib_la_SOURCES = sharedlib.c

C pre-processor flags used for lib_LTLIBRARIES
#libsharedlib_la_CPPFLAGS =

Headers files to be installed in <prefix>/include
include_HEADERS = sharedlib.h

Versioning Libtool Libraries with version triplets
libsharedlib_la_LDFLAGS = -version-info 1:0:0
[base_dir] $ cat debhello-2.0/src/Makefile.am
program executables to be produced
bin_PROGRAMS = hello

source files used for bin_PROGRAMS
hello_SOURCES = hello.c

C pre-processor flags used for bin_PROGRAMS
AM_CPPFLAGS = -I$(srcdir) -I$(top_srcdir)/lib

Extra options for the linker for hello
hello_LDFLAGS =

Libraries the `hello` binary to be linked
hello_LDADD = $(top_srcdir)/lib/libsharedlib.la

configure.ac (v=2.0):

[base_dir] $ cat debhello-2.0/configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello],[2.2],[foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])

AM_INIT_AUTOMAKE([foreign])

Set default to --enable-shared --disable-static
LT_INIT([shared disable-static])

find the libltdl sources in the libltdl sub-directory
LT_CONFIG_LTDL_DIR([libltdl])

127

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

choose one
LTDL_INIT([recursive])
#LTDL_INIT([subproject])
#LTDL_INIT([nonrecursive])

Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
Checks for programs.
AC_PROG_CC

only for the recursive case
AC_CONFIG_FILES([Makefile

lib/Makefile
man/Makefile
src/Makefile])

AC_OUTPUT

Let’s use the debmake command to package this into multiple packages:

• debhello: type = bin

• libsharedlib1: type = lib

• libsharedlib-dev: type = dev

Here, we use the -b’libsharedlib1,libsharedlib-dev’ option to specify the additional binary packages
to be generated.

[base_dir] $ cd debhello-2.0
[debhello-2.0] $ debmake -b',libsharedlib1,libsharedlib-dev' -x1
I: debmake (version: 5.1.2)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-2.0] $ cd ..
I: Non-native Debian package pkg="debhello", ver="2.0", rev="1" method="dir_d...
I: already in the package-version form: "debhello-2.0"
I: [base_dir] $ ln -sf debhello-2.0.tar.xz debhello_2.0.orig.tar.xz
I: [base_dir] $ cd debhello-2.0
I: parsing option -b ",libsharedlib1,libsharedlib-dev"
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: binary package=libsharedlib1 Type=lib / Arch=any M-A=same
I: binary package=libsharedlib-dev Type=dev / Arch=any M-A=same
I: build_type = Autotools with autoreconf
I: ext_type = am 4 files
I: ext_type = c 3 files
I: ext_type = 1 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-2.0] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
...

Получившийся результат похож на то, что было описано в «Раздел 15.8», но имеет большее
количество шаблонных файлов.

Let’s inspect the notable template files generated.
debian/rules (шаблонный файл, v=2.0):

[base_dir] $ cd debhello-2.0
[debhello-2.0] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.

128

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
Package maintainers to append CFLAGS
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
Package maintainers to append LDFLAGS
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1
#
With debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax
%:

dh $@ --with autoreconf

debmake generated override targets
Set options for ./configure
#CONFIGURE_FLAGS = <options for ./configure>
#overrride_dh_configure:
dh_configure -- $(CONFIGURE_FLAGS)
#
Do not install libtool archive, python .pyc .pyo
#override_dh_install:
dh_install --list-missing -X.la -X.pyc -X.pyo

Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=2.0):

[base_dir] $ cd debhello-2.0
[debhello-2.0] $ vim debian/rules
... hack, hack, hack, ...
[debhello-2.0] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

%:
dh $@ --with autoreconf

129

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

override_dh_missing:
dh_missing -X.la

debian/control (версия сопровождающего, v=2.0):

[debhello-2.0] $ vim debian/control
... hack, hack, hack, ...
[debhello-2.0] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
dh-autoreconf,
Standards-Version: 4.7.3
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
libsharedlib1 (= ${binary:Version}),
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the compiled binary executable.
.
This Debian binary package is an example package.
(This is an example only)

Package: libsharedlib1
Section: libs
Architecture: any
Multi-Arch: same
Pre-Depends:
${misc:Pre-Depends},
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the shared library.

Package: libsharedlib-dev
Section: libdevel
Architecture: any
Multi-Arch: same
Depends:
libsharedlib1 (= ${binary:Version}),
${misc:Depends},
Description: Simple packaging example for debmake
This package contains the development files.

debian/*.install (версия сопровождающего, v=2.0):

[debhello-2.0] $ vim debian/copyright
... hack, hack, hack, ...
[debhello-2.0] $ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

130

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Since this upstream source creates the proper auto-generated Makefile, there is no need to create
debian/install and debian/manpages files.

В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Шабонные файлы в каталоге debian/. (v=2.0):

[debhello-2.0] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-2.0] $ rm -f debian/README.source debian/source/*.ex
[debhello-2.0] $ rm -rf debian/patches
[debhello-2.0] $ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- debhello.install
+-- docs
+-- examples
+-- gbp.conf
+-- libsharedlib-dev.install
+-- libsharedlib1.install
+-- libsharedlib1.symbols
+-- manpages
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

4 directories, 18 files

Остальные работы по подготовке пакета практически полностью совпадают с описанными в
«Раздел 15.8».

Here are the generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=2.0):

[debhello-2.0] $ dpkg -f debhello-dbgsym_2.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 2.0-1)
[debhello-2.0] $ dpkg -f debhello_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks

131

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.12. CMAKE (MULTI-BINARY PACKAGE)

Depends: libsharedlib1 (= 2.0-1), libc6 (>= 2.34)
[debhello-2.0] $ dpkg -f libsharedlib-dev_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.0-1)
[debhello-2.0] $ dpkg -f libsharedlib1-dbgsym_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.0-1)
[debhello-2.0] $ dpkg -f libsharedlib1_2.0-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.2.5)

15.12 CMake (multi-binary package)
This example demonstrates creating a set of Debian binary packages including the executable package,
the shared library package, the development file package, and the debug symbol package from a simple
C source program using CMake (CMakeLists.txt and files such as config.h.in) as its build system.

Let’s assume this upstream tarball to be debhello-2.1.tar.xz.
Этот тип исходного кода предполагает установку в виде несистемного файла, например, как

[base_dir] $ tar --xz -xmf debhello-2.1.tar.xz
[base_dir] $ cd debhello-2.1
[debhello-2.1] $ mkdir obj-x86_64-linux-gnu
[debhello-2.1] $ cd obj-x86_64-linux-gnu
[debhello-2.1] $ cmake ..
[debhello-2.1] $ make
[debhello-2.1] $ make install

Получитм исходный код и создадим пакет Debian.
Download debhello-2.1.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-2.1.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-2.1.tar.xz
[base_dir] $ tree
.
+-- debhello-2.1
| +-- CMakeLists.txt
| +-- LICENSE
| +-- README.md
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- lib
| | +-- CMakeLists.txt
| | +-- sharedlib.c
| | +-- sharedlib.h
| +-- man
| | +-- CMakeLists.txt
| | +-- hello.1
| +-- src
| +-- CMakeLists.txt
| +-- config.h.in
| +-- hello.c
+-- debhello-2.1.tar.xz

6 directories, 14 files

Ниже приводится содержимое этого архива с исходным кодом.
src/hello.c (v=2.1):

[base_dir] $ cat debhello-2.1/src/hello.c
#include "config.h"
#include <stdio.h>

132

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.12. CMAKE (MULTI-BINARY PACKAGE)

#include <sharedlib.h>
int
main()
{

printf("Hello, I am " PACKAGE_AUTHOR "!\n");
sharedlib();
return 0;

}

src/config.h.in (v=2.1):

[base_dir] $ cat debhello-2.1/src/config.h.in
/* name of the package author */
#define PACKAGE_AUTHOR "@PACKAGE_AUTHOR@"

lib/sharedlib.c и lib/sharedlib.h (v=2.1):

[base_dir] $ cat debhello-2.1/lib/sharedlib.h
int sharedlib();
[base_dir] $ cat debhello-2.1/lib/sharedlib.c
#include <stdio.h>
int
sharedlib()
{

printf("This is a shared library!\n");
return 0;

}

CMakeLists.txt (v=2.1):

[base_dir] $ cat debhello-2.1/CMakeLists.txt
cmake_minimum_required(VERSION 3.31)
project(debhello)
set(PACKAGE_AUTHOR "Osamu Aoki")
add_subdirectory(lib)
add_subdirectory(src)
add_subdirectory(man)
[base_dir] $ cat debhello-2.1/man/CMakeLists.txt
install(
FILES ${CMAKE_CURRENT_SOURCE_DIR}/hello.1
DESTINATION share/man/man1

)
[base_dir] $ cat debhello-2.1/src/CMakeLists.txt
Always define HAVE_CONFIG_H
add_definitions(-DHAVE_CONFIG_H)
Generate config.h from config.h.in
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/config.h.in"
"${CMAKE_CURRENT_BINARY_DIR}/config.h"
)

include_directories("${CMAKE_CURRENT_BINARY_DIR}")
include_directories("${CMAKE_SOURCE_DIR}/lib")

add_executable(hello hello.c)
target_link_libraries(hello sharedlib)
install(TARGETS hello
RUNTIME DESTINATION bin

)

Создадим пакет из этого исходного кода с помощью команды debmake.

[base_dir] $ cd debhello-2.1
[debhello-2.1] $ debmake -b',libsharedlib1,libsharedlib-dev' -x1
I: debmake (version: 5.1.2)
I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-2.1] $ cd ..

133

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.12. CMAKE (MULTI-BINARY PACKAGE)

I: Non-native Debian package pkg="debhello", ver="2.1", rev="1" method="dir_d...
I: already in the package-version form: "debhello-2.1"
I: [base_dir] $ ln -sf debhello-2.1.tar.xz debhello_2.1.orig.tar.xz
I: [base_dir] $ cd debhello-2.1
I: parsing option -b ",libsharedlib1,libsharedlib-dev"
I: binary package=debhello Type=bin / Arch=any M-A=foreign
I: binary package=libsharedlib1 Type=lib / Arch=any M-A=same
I: binary package=libsharedlib-dev Type=dev / Arch=any M-A=same
I: build_type = Cmake
I: ext_type = c 4 files
I: ext_type = 1 1 files
I: ext_type = desktop 1 files
I: creating debian/* files with "-x 1" option
I: [debhello-2.1] $ licensecheck --recursive --copyright --deb-machine . > d...
I: creating debian/copyright by licensecheck.
I: creating debian/control from control.py
I: creating debian/control by control.py
I: creating debian/changelog from extra0_changelog
...

Получившийся результат похож на то, что было описано в «Раздел 15.8», но не совпадает с
ним в точности.

Let’s inspect the notable template files generated.
debian/rules (шаблонный файл, v=2.1):

[base_dir] $ cd debhello-2.1
[debhello-2.1] $ cat debian/rules
#!/usr/bin/make -f
You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)
This is an autogenerated template for debian/rules.
#
Output every command that modifies files on the build system.
#export DH_VERBOSE = 1
#
Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.
#
See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options
#export DEB_BUILD_MAINT_OPTIONS = hardening=+all
Package maintainers to append CFLAGS
#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
Package maintainers to append LDFLAGS
#export DEB_LDFLAGS_MAINT_APPEND = -Wl,-O1
#
With debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.
#
These are rarely used code. (START)
#
The following include for *.mk magically sets miscellaneous
variables while honoring existing values of pertinent
environment variables:
#
Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk
Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor.mk
Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk
#
You may alternatively set them susing a simple script such as:

134

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.12. CMAKE (MULTI-BINARY PACKAGE)

DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#
These are rarely used code. (END)
#

main packaging script based on post dh7 syntax
%:

dh $@

debmake generated override targets
#override_dh_auto_configure:
dh_auto_configure -- \
-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_TARGET_MULTIARCH)"
#
You may need to patch CMakeLists.txt to set the library install path to be:...
#-install(TARGETS <sharedlibname> LIBRARY DESTINATION lib)
#+install(TARGETS <sharedlibname> LIBRARY DESTINATION lib/${CMAKE_LIBRARY_ARC...

Multiarch package requires library files to be installed to
/usr/lib/<triplet>/ . If the build system does not support
$(DEB_HOST_MULTIARCH), you may need to override some targets such as
dh_auto_configure or dh_auto_install to use $(DEB_HOST_MULTIARCH) .

Сделаем этот пакет Debian лучше.
debian/rules (версия сопровождающего, v=2.1):

[base_dir] $ cd debhello-2.1
[debhello-2.1] $ vim debian/rules
... hack, hack, hack, ...
[debhello-2.1] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed
DEB_HOST_MULTIARCH ?= $(shell dpkg-architecture -qDEB_HOST_MULTIARCH)

%:
dh $@

override_dh_auto_configure:
dh_auto_configure -- \

-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_HOST_MULTIARCH)"

debian/control (версия сопровождающего, v=2.1):

[debhello-2.1] $ vim debian/control
... hack, hack, hack, ...
[debhello-2.1] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
cmake,
Standards-Version: 4.7.3
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
libsharedlib1 (= ${binary:Version}),

135

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.12. CMAKE (MULTI-BINARY PACKAGE)

${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the compiled binary executable.
.
This Debian binary package is an example package.
(This is an example only)

Package: libsharedlib1
Section: libs
Architecture: any
Multi-Arch: same
Pre-Depends:
${misc:Pre-Depends},
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the shared library.

Package: libsharedlib-dev
Section: libdevel
Architecture: any
Multi-Arch: same
Depends:
libsharedlib1 (= ${binary:Version}),
${misc:Depends},
Description: Simple packaging example for debmake
This package contains the development files.

debian/*.install (версия сопровождающего, v=2.1):

[debhello-2.1] $ vim debian/copyright
... hack, hack, hack, ...
[debhello-2.1] $ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The upstream CMakeLists.txt file needs to be patched to handle the multiarch path correctly.
debian/patches/* (версия сопровождающего, v=2.1):

... hack, hack, hack, ...

136

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.12. CMAKE (MULTI-BINARY PACKAGE)

[debhello-2.1] $ cat debian/libsharedlib1.symbols
libsharedlib.so.1 libsharedlib1 #MINVER#
sharedlib@Base 2.1

Since this upstream source creates the proper auto-generated Makefile, there is no need to create
debian/install and debian/manpages files.

В каталоге debian/ имеются и другие шаблонные файлы. Их также следует обновить.
Шаблонные файлы в каталоге debian/. (v=2.1):

[debhello-2.1] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-2.1] $ rm -f debian/README.source debian/source/*.ex
[debhello-2.1] $ tree -F debian
debian/
+-- README.Debian
+-- changelog
+-- control
+-- copyright
+-- debhello.install
+-- docs
+-- examples
+-- gbp.conf
+-- libsharedlib-dev.install
+-- libsharedlib1.install
+-- libsharedlib1.symbols
+-- manpages
+-- patches/
| +-- 000-cmake-multiarch.patch
| +-- series
+-- rules*
+-- salsa-ci.yml
+-- source/
| +-- format
+-- tests/
| +-- control
+-- upstream/
| +-- metadata
+-- watch

5 directories, 20 files

Остальные работы по подготовке пакета практически полностью совпадают с описанными в
«Раздел 15.8».

Here are the generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=2.1):

[debhello-2.1] $ dpkg -f debhello-dbgsym_2.1-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 2.1-1)
[debhello-2.1] $ dpkg -f debhello_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.1-1), libc6 (>= 2.34)
[debhello-2.1] $ dpkg -f libsharedlib-dev_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.1-1)
[debhello-2.1] $ dpkg -f libsharedlib1-dbgsym_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libsharedlib1 (= 2.1-1)
[debhello-2.1] $ dpkg -f libsharedlib1_2.1-1_amd64.deb pre-depends \

depends recommends conflicts breaks
Depends: libc6 (>= 2.2.5)

137

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.13. ИНТЕРНАЦИОНАЛИЗАЦИЯ

15.13 Интернационализация
Here is an example of updating the simple upstream C source debhello-2.0.tar.xz presented in «Раз-
дел 15.11» for internationalization (i18n) and creating the updated upstream C source debhello-2.0.tar.xz.

In the real situation, the package should already be internationalized. So this example is educational
for you to understand how this internationalization is implemented.

Подсказка

The routine maintainer activity for the i18n is simply to add translation po files
reported to you via the Bug Tracking System (BTS) to the po/ directory and to
update the language list in the po/LINGUAS file.

Получитм исходный код и создадим пакет Debian.
Download debhello-2.0.tar.xz (i18n)

[base_dir] $ wget http://www.example.org/download/debhello-2.0.tar.xz
...
[base_dir] $ tar --xz -xmf debhello-2.0.tar.xz
[base_dir] $ tree
.
+-- debhello-2.0
| +-- LICENSE
| +-- Makefile.am
| +-- README.md
| +-- configure.ac
| +-- data
| | +-- hello.desktop
| | +-- hello.png
| +-- lib
| | +-- Makefile.am
| | +-- sharedlib.c
| | +-- sharedlib.h
| +-- man
| | +-- Makefile.am
| | +-- hello.1
| +-- src
| +-- Makefile.am
| +-- hello.c
+-- debhello-2.0.tar.xz

6 directories, 14 files

Internationalize this source tree with the gettextize command and remove files auto-generated by
Autotools.

запустим gettextize (i18n):

[base_dir] $ cd debhello-2.0
$ gettextize
Creating po/ subdirectory
Creating build-aux/ subdirectory
Copying file ABOUT-NLS
Copying file build-aux/config.rpath
Not copying intl/ directory.
Copying file po/Makefile.in.in
Copying file po/Makevars.template
Copying file po/Rules-quot
Copying file po/boldquot.sed
Copying file po/en@boldquot.header
Copying file po/en@quot.header
Copying file po/insert-header.sin
Copying file po/quot.sed

138

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.13. ИНТЕРНАЦИОНАЛИЗАЦИЯ

Copying file po/remove-potcdate.sin
Creating initial po/POTFILES.in
Creating po/ChangeLog
Creating directory m4
Copying file m4/gettext.m4
Copying file m4/iconv.m4
Copying file m4/lib-ld.m4
Copying file m4/lib-link.m4
Copying file m4/lib-prefix.m4
Copying file m4/nls.m4
Copying file m4/po.m4
Copying file m4/progtest.m4
Creating m4/ChangeLog
Updating Makefile.am (backup is in Makefile.am~)
Updating configure.ac (backup is in configure.ac~)
Creating ChangeLog

Please use AM_GNU_GETTEXT([external]) in order to cause autoconfiguration
to look for an external libintl.

Please create po/Makevars from the template in po/Makevars.template.
You can then remove po/Makevars.template.

Please fill po/POTFILES.in as described in the documentation.

Please run 'aclocal' to regenerate the aclocal.m4 file.
You need aclocal from GNU automake 1.9 (or newer) to do this.
Then run 'autoconf' to regenerate the configure file.

You will also need config.guess and config.sub, which you can get from the CV...
of the 'config' project at http://savannah.gnu.org/. The commands to fetch th...
are
$ wget 'http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/conf...
$ wget 'http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/conf...

You might also want to copy the convenience header file gettext.h
from the /usr/share/gettext directory into your package.
It is a wrapper around <libintl.h> that implements the configure --disable-nl...
option.

Press Return to acknowledge the previous 6 paragraphs.
[debhello-2.0] $ rm -rf m4 build-aux *~

Проверим созданные файлы в каталоге po/.
файлы в каталоге po (i18n):

[debhello-2.0] $ ls -l po
total 60
-rw-rw-r-- 1 osamu osamu 494 Feb 3 08:57 ChangeLog
-rw-rw-r-- 1 osamu osamu 17577 Feb 3 08:57 Makefile.in.in
-rw-rw-r-- 1 osamu osamu 3376 Feb 3 08:57 Makevars.template
-rw-rw-r-- 1 osamu osamu 59 Feb 3 08:57 POTFILES.in
-rw-rw-r-- 1 osamu osamu 2203 Feb 3 08:57 Rules-quot
-rw-rw-r-- 1 osamu osamu 217 Feb 3 08:57 boldquot.sed
-rw-rw-r-- 1 osamu osamu 1337 Feb 3 08:57 en@boldquot.header
-rw-rw-r-- 1 osamu osamu 1203 Feb 3 08:57 en@quot.header
-rw-rw-r-- 1 osamu osamu 672 Feb 3 08:57 insert-header.sin
-rw-rw-r-- 1 osamu osamu 153 Feb 3 08:57 quot.sed
-rw-rw-r-- 1 osamu osamu 432 Feb 3 08:57 remove-potcdate.sin

Let’s update the configure.ac by adding «AM_GNU_GETTEXT([external])», etc..
configure.ac (i18n):

[debhello-2.0] $ vim configure.ac
... hack, hack, hack, ...

139

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.13. ИНТЕРНАЦИОНАЛИЗАЦИЯ

[debhello-2.0] $ cat configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello],[2.2],[foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])

AM_INIT_AUTOMAKE([foreign])

Set default to --enable-shared --disable-static
LT_INIT([shared disable-static])

find the libltdl sources in the libltdl sub-directory
LT_CONFIG_LTDL_DIR([libltdl])

choose one
LTDL_INIT([recursive])
#LTDL_INIT([subproject])
#LTDL_INIT([nonrecursive])

Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
Checks for programs.
AC_PROG_CC

desktop file support required
AM_GNU_GETTEXT_VERSION([0.19.3])
AM_GNU_GETTEXT([external])

only for the recursive case
AC_CONFIG_FILES([Makefile

po/Makefile.in
lib/Makefile
man/Makefile
src/Makefile])

AC_OUTPUT

Let’s create the po/Makevars file from the po/Makevars.template file.
po/Makevars (i18n):

... hack, hack, hack, ...
[debhello-2.0] $ diff -u po/Makevars.template po/Makevars
--- po/Makevars.template 2026-02-03 08:57:47.107232138 +0000
+++ po/Makevars 2026-02-03 08:57:47.188342050 +0000
@@ -18,14 +18,14 @@
or entity, or to disclaim their copyright. The empty string stands for
the public domain; in this case the translators are expected to disclaim
their copyright.
-COPYRIGHT_HOLDER = Free Software Foundation, Inc.
+COPYRIGHT_HOLDER = Osamu Aoki <osamu@debian.org>

This tells whether or not to prepend "GNU " prefix to the package
name that gets inserted into the header of the $(DOMAIN).pot file.
Possible values are "yes", "no", or empty. If it is empty, try to
detect it automatically by scanning the files in $(top_srcdir) for
"GNU packagename" string.
-PACKAGE_GNU =
+PACKAGE_GNU = no

This is the email address or URL to which the translators shall report
bugs in the untranslated strings:

140

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.13. ИНТЕРНАЦИОНАЛИЗАЦИЯ

[debhello-2.0] $ rm po/Makevars.template

Let’s update C sources for the i18n version by wrapping strings with _(…).
src/hello.c (i18n):

... hack, hack, hack, ...
[debhello-2.0] $ cat src/hello.c
#include "config.h"
#include <stdio.h>
#include <sharedlib.h>
#include <libintl.h>
#define _(string) gettext (string)
int
main()
{

printf(_("Hello, I am " PACKAGE_AUTHOR "!\n"));
sharedlib();
return 0;

}

lib/sharedlib.c (i18n):

... hack, hack, hack, ...
[debhello-2.0] $ cat lib/sharedlib.c
#include <stdio.h>
#include <libintl.h>
#define _(string) gettext (string)
int
sharedlib()
{

printf(_("This is a shared library!\n"));
return 0;

}

The new gettext (v=0.19) can handle the i18n version of the desktop file directly.
data/hello.desktop.in (i18n):

[debhello-2.0] $ fgrep -v '[ja]=' data/hello.desktop > data/hello.desktop.in
[debhello-2.0] $ rm data/hello.desktop
[debhello-2.0] $ cat data/hello.desktop.in
[Desktop Entry]
Name=Hello
Comment=Greetings
Type=Application
Keywords=hello
Exec=hello
Terminal=true
Icon=hello.png
Categories=Utility;

Приведём список входных файлов для извлечения переводных строк в po/POTFILES.in.
po/POTFILES.in (i18n):

... hack, hack, hack, ...
[debhello-2.0] $ cat po/POTFILES.in
src/hello.c
lib/sharedlib.c
data/hello.desktop.in

Here is the updated root Makefile.am with po added to the SUBDIRS environment variable.
Makefile.am (i18n):

[debhello-2.0] $ cat Makefile.am
recursively process `Makefile.am` in SUBDIRS
SUBDIRS = po lib src man

141

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.13. ИНТЕРНАЦИОНАЛИЗАЦИЯ

ACLOCAL_AMFLAGS = -I m4

EXTRA_DIST = build-aux/config.rpath m4/ChangeLog

Let’s make a translation template file, debhello.pot.
po/debhello.pot (i18n):

[debhello-2.0] $ xgettext -f po/POTFILES.in -d debhello -o po/debhello.pot -k...
[debhello-2.0] $ cat po/debhello.pot
SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2026-02-03 08:57+0000\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"Language: \n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"

#: src/hello.c:9
#, c-format
msgid "Hello, I am "
msgstr ""

#: lib/sharedlib.c:7
#, c-format
msgid "This is a shared library!\n"
msgstr ""

#: data/hello.desktop.in:2
msgid "Hello"
msgstr ""

#: data/hello.desktop.in:3
msgid "Greetings"
msgstr ""

#: data/hello.desktop.in:5
msgid "hello"
msgstr ""

Let’s add a translation for French.
po/LINGUAS и po/fr.po (i18n):

[debhello-2.0] $ echo 'fr' > po/LINGUAS
[debhello-2.0] $ cp po/debhello.pot po/fr.po
[debhello-2.0] $ vim po/fr.po
... hack, hack, hack, ...
[debhello-2.0] $ cat po/fr.po
SOME DESCRIPTIVE TITLE.
This file is put in the public domain.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
msgid ""
msgstr ""
"Project-Id-Version: debhello 2.2\n"

142

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.14. ДЕТАЛИ

"Report-Msgid-Bugs-To: foo@example.org\n"
"POT-Creation-Date: 2015-03-01 20:22+0900\n"
"PO-Revision-Date: 2015-02-21 23:18+0900\n"
"Last-Translator: Osamu Aoki <osamu@debian.org>\n"
"Language-Team: French <LL@li.org>\n"
"Language: ja\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"

#: src/hello.c:34
#, c-format
msgid "Hello, my name is %s!\n"
msgstr "Bonjour, je m'appelle %s!\n"

#: lib/sharedlib.c:29
#, c-format
msgid "This is a shared library!\n"
msgstr "Ceci est une bibliothèque partagée!\n"

#: data/hello.desktop.in:3
msgid "Hello"
msgstr ""

#: data/hello.desktop.in:4
msgid "Greetings"
msgstr "Salutations"

#: data/hello.desktop.in:6
msgid "hello"
msgstr ""

#: data/hello.desktop.in:9
msgid "hello.png"
msgstr ""

Работа над подготовкой пакета практически полностью совпадает с тем, что описывается в
«Раздел 15.11».

You can find more i18n examples by following «Раздел 15.14».

15.14 Детали
You can obtain detailed information about the examples presented and their variants as follows:

Как получить детали
[base_dir] $ apt-get source debmake-doc
[base_dir] $ cd debmake-doc*
[debmake-doc-*] $ view examples/README.md

Follow the exact instruction in examples/README.md.

[debmake-doc-*] $ cd examples
[examples] $ make

Now, each directory named as examples/debhello-?.?_build-? contains the Debian packaging example.

• эмулированный журнал активности командной строки консоли: файл .log

• эмулированный журнал активности командной строки консоли (короткий): файл .slog

• срез образа дерева исходного кода после выполнения команды debmake: каталог debmake

• snapshot source tree image after proper packaging: the package directory

• срез образа дерева исходного кода после выполнения команды debuild: каталог test

143

ГЛАВА 15. ДОПОЛНИТЕЛЬНЫЕ ПРИМЕРЫ 15.14. ДЕТАЛИ

Notable examples include:

• POSIX shell script with Makefile and i18n support (v=3.0)

• C source with Makefile.in + configure and i18n support (v=3.2)

• C source with Autotools and i18n support (v=3.3)

• C source with CMake and i18n support (v=3.4)

144

Глава 16

Страница руководства debmake(1)

16.1 НАЗВАНИЕ
debmake - program to make a Debian source package

16.2 СИНТАКСИС
debmake [-h] [-n] [-p package] [-u version] [-r revision] [-z extension] [-b ”binarypackage[:type], …]” [-D
value] [-e foo@example.org] [-f ”firstname lastname”] [-i [debuild|sbuild|dgit sbuild|gbp buildpackage|dpkg-
buildpackage| …]] [-m] [-q] [-v] [-V] [-w ”addon, … ”] [-x [01234]] [-y] [-B] [URL]

16.3 ОПИСАНИЕ
debmake helps to build the Debian package from the upstream source.

Normally, this is done as follows:

• The upstream source is obtained as a tarball from a remote web site or a cloned work tree using
«git clone».

– For a tarball, it is expanded to many files in the source directory.
– For a cloned work tree, it is used as the source directory.

• debmake is typically invoked in the source directory without any argument.

– The source directory is copied to ../package-version/ directory.
– If ../package_version.orig.tar.xz is missing, it is generated.
– The current directory is moved to ../package-version/.
– Template files are generated in the ../package-version/debian/ directory

• Files in the ../package-version/debian/ directory should be manually adjusted.

• dpkg-buildpackage (usually from its wrapper debuild, sbuild, …) is invoked in the ../package-
version/ directory to make Debian source and binary packages.

Also, debmake can be invoked with an argument. This argument can be URL for a tarball hosted
on a remote web site or for a source code accessed by «git clone»; or local PATH to the tarball or the
source code.

Arguments to -b, -f, and -w options need to be quoted to protect them from the shell.
Other tools also offer ways to obtain the upstream tarball and creating required symlink to build a

Debian package depending on your workflow. For example, origtargz, mk-origtargz, git-deborig, and
pristine-tar.

145

ГЛАВА 16. СТРАНИЦА РУКОВОДСТВА … 16.4. POSITIONAL ARGUMENTS

16.4 Positional arguments

URL acquire the source tree from the tarball, the git repository or the source tree at this URL (or PATH)
(if missing, the source tree uses the current directory)

16.5 Options

-h, --help show this help message and exit

-n, --native make a native source package without .orig.tar.xz

-p, --package package set the Debian package name

-u, --upstreamversion version set the upstream package version (”@” in version is replaced by ”0~yymmddHHMM”
timestamp)

-r, --revision revision set the Debian package revision (”@” in revision is replaced by ”0~yymmddHHMM”
timestamp)

-z, --tarz extension set the tarball compression type for the missing upstream tarball, extension=(tar.xz|tar.gz|tar.bz2)
(alias: z, b, x)

-b, --binaryspec ”binarypackage[:type], … ” set the binary package specs by a comma separated list
of binarypackage:type pairs. Here, binarypackage is the binary package name, and the optional
type is chosen from the following type values:

• bin: C/C++ compiled ELF binary code package (any, foreign) (default, alias: ””, i.e., null-
string)

• data: Data (fonts, graphics, …) package (all, foreign) (alias: da)
• dev: пакет с библиотекой разработки (any, same) (псевдоним: de)
• doc: пакет документации (all, foreign) (псевдоним: do)
• lib: пакет с библиотекой (any, same) (псевдоним: l)
• perl: пакет со сценарием на языке Perl (all, foreign) (псевдоним: pl)
• python3: Python (version 3) script package (all, foreign) (alias: py3, python, py)
• ruby: пакет со сценарием на языке Ruby (all, foreign) (псевдоним: rb)
• nodejs: Node.js based JavaScript package (all, foreign) (alias: js)
• script: Shell and other interpreted language script package (all, foreign) (alias: sh)

The pair values in the parentheses, such as (any, foreign), are the Architecture and Multi-Arch
stanza values set in the debian/control file. In many cases, the debmake command makes good
guesses for type from binarypackage. If type is not obvious, type is set to bin.
Here are examples for typical binary package split scenarios where the upstream Debian source
package name is foo:

• Generating an executable binary package foo:
– «-b’foo:bin’», or its short form «-b’-’», or no -b option

• Generating an executable (python3) binary package python3-foo:
– «-b’python3-foo:py’», or its short form «-b’python3-foo’»

• Generating a data package foo:
– «-b’foo:data’», or its short form «-b’-:data’»

• Generating a executable binary package foo and a documentation one foo-doc:
– «-b’foo:bin,foo-doc:doc’», or its short form «-b’-:-doc’»

• Generating a executable binary package foo, a library package libfoo1, and a library development
package libfoo-dev:

146

ГЛАВА 16. СТРАНИЦА РУКОВОДСТВА … 16.6. ПРИМЕРЫ

– «-b’foo:bin,libfoo1:lib,libfoo-dev:dev’» or its short form «-b’-,libfoo1,libfoo-dev’»

Если содержимое дерева исходного кода не совпадает с настройками поля тип, то команда
debmake выводит предупреждение.

-e, --email foo@example.org set e-mail address
По умолчанию берётся значение переменной окружения $DEBEMAIL.

-D, --debug value set DEBUG environment variable to value for debug logging (substring of ”spPd”,
use ”_” to unset DEBUG)

-f, --fullname ”firstname lastname” set the fullname
По умолчанию берётся значение переменной окружения $DEBFULLNAME.

-i, --invoke [debuild|sbuild|dgit sbuild|gbp buildpackage|dpkg-buildpackage| …] invoke package build
tool

-m, --monoarch force packages to be non-multiarch

-q, --quitearly quit early before creating files in the debian directory

-v, --version show version information

-V, --verbose use --verbose for shell commands if available

-w, --with ”addon … ” set additional «dh --with» option arguments in debian/rules
For Autotools based packages, if they install Python (version 3) programs, setting python3 as
addon to the debmake command argument is needed since this is non-obvious. But for pyproject.toml
based Python packages, setting python3 as addon to the debmake command argument is not
needed since this is obvious and the debmake command automatically set it to the dh(1) command.

-x, --extra [01234] generate extra configuration files as templates (default: 2)
Please note debian/changelog, debian/control, debian/copyright, debian/rules, and debian/source/format
are required configuration files to build a modern Debian binary package.
The number determines which configuration templates are generated.

• -x0: all 5 required configuration template files. (selected option if any of these required files
already exist)

• -x1: all -x0 files + desirable configuration template files with binary package type supports.
• -x2: all -x1 files + normal configuration template files with maintainer script supports. (default)
• -x3: all -x2 files + optional configuration template files.
• -x4: all -x3 files + deprecated configuration template files.

Some configuration template files are generated with the extra .ex suffix to ease their removal.
To activate these, rename their file names to the ones without the .ex suffix and edit their contents.
Existing configuration files are never overwritten. If you wish to update some of the existing configuration
files, please rename them before running the debmake command and manually merge the generated
configuration files with the old renamed ones.

-y, --yes use once to «force yes» for all prompts, twice to «force no»

-B, --backup keep the user editted ones without .ex suffix and create template files with .ex suffix

16.6 ПРИМЕРЫ
For a well behaving source, you can build a good-for-local-use installable single Debian binary package
easily with one command. Test install of such a package generated in this way offers a good alternative to
the traditional «make install» command installing into the /usr/local directory since the Debian package
can be removed cleanly by the «dpkg -P ’… ’» command. Here are some examples of how to build such
test packages.

For a typical C program source tree packaged with autoconf/automake:

147

ГЛАВА 16. СТРАНИЦА РУКОВОДСТВА … 16.7. ВСПОМОГАТЕЛЬНЫЕ ПАКЕТЫ

• debmake -i sbuild

For a typical Python (version 3) module source tree:

• debmake -b”:python3” -i sbuild

For a typical Python (version 3) module in the package-version.tar.xz archive:

• debmake package-version.tar.xz -b”:python3” -i sbuild

For a typical Perl module in the package-version.tar.xz archive:

• debmake package-version.tar.xz -b”:perl” -i sbuild

16.7 ВСПОМОГАТЕЛЬНЫЕ ПАКЕТЫ
Для работы над пакетами может потребоваться установка некоторых дополнительных специали-
зированных вспомогательных пакетов.

• Python (version 3) programs may require the pybuild-plugin-pyproject package.

• The Autotools (autoconf + automake) build system may require autotools-dev or dh-autoreconf
package.

• Ruby programs may require the gem2deb package.

• Node.js based JavaScript programs may require the pkg-js-tools package.

• Java programs may require the javahelper package.

• Для программ для окружения Gnome может потребоваться пакет gobject-introspection.

• и т. д.

16.8 ПРЕДОСТЕРЕЖЕНИЯ
Although debmake is meant to provide template files for the package maintainer to work on, actual
packaging activities are often performed without using debmake while referencing only existing similar
packages and «Debian Policy Manual». All template files generated by debmake are required to be
modified manually.

There are some points for debmake:

• debmake helps to write terse packaging tutorial «Guide for Debian Maintainers» (debmake-doc
package).

• debmake provides short extracted license texts as debian/copyright in decent accuracy to help
license review.

• «Guide for Debian Maintainers» also serves as a tutorial with examples for the usage of debmake.

• debmake internally calls licensecheck from the licensecheck package to create debian/copyright
if it doesn’t exist.

• debmake internally calls lrc from the licenserecon package to verify debian/copyright if it already
exists.

There are some limitations for what characters may be used as a part of the Debian package. The
most notable limitation is the prohibition of uppercase letters in the package name. Here is a summary
as a set of regular expressions:

• Upstream package name (-p): [-+.a-z0-9]{2,}

• Binary package name (-b): [-+.a-z0-9]{2,}

• Upstream version (-u): [0-9][-+.:~a-z0-9A-Z]*

148

https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/manuals/debmake-doc/

ГЛАВА 16. СТРАНИЦА РУКОВОДСТВА … 16.9. ОТЛАДКА

• Debian revision (-r): [0-9][+.~a-z0-9A-Z]*

See the exact definition in «Chapter 5 - Control files and their fields» in the «Debian Policy Manual».
debmake assumes relatively simple packaging cases. So all programs related to the interpreter are

assumed to be «Architecture: all». This is not always true.

16.9 ОТЛАДКА
Сообщения об ошибках отправляйте с помощью команды reportbug для пакета debmake.

Набор символов в переменной окружении $DEBUG определяет уровень вывода журнала.

• s: program progress logging

• p: key para[..] value logging

• P: all para[..] value logging

• d: para[”debs”] value logging

Use this feature as:

[base_dir] $ export DEBUG=spd; debmake ...

or

[base_dir] $ debmake -D spd ...

See README.md in the source for more.

16.10 АВТОР
Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>

16.11 ЛИЦЕНЗИЯ
Лицензия Expat

16.12 СМОТРИТЕ ТАКЖЕ
The debmake-doc package provides the «Guide for Debian Maintainers» in plain text, HTML and PDF
formats under the /usr/share/doc/debmake-doc/ directory.

See also licensecheck(1), lrc(1), dpkg-source(1), deb-control(5), debhelper(7), dh(1), dpkg-buildpackage(1),
debuild(1), quilt(1), dpkg-depcheck(1), sbuild(1), gbp-buildpackage(1), and gbp-pq(1) manpages.

149

https://www.debian.org/doc/debian-policy/#document-ch-controlfields
mailto:osamu@debian.org
https://www.debian.org/doc/manuals/debmake-doc/

Глава 17

debmake options

Here are some additional explanations for debmake options.

17.1 Shortcut option (-i)
The debmake command offers a shortcut option.

• -i : выполнить сценарий для сборки двоичного пакета

Действия из примера, приведённого выше в «Глава 5», можно выполнить с помощью следую-
щей простой команды.

[base_dir] $ debmake package-1.0.tar.xz -i debuild

Подсказка

A URL such as «https://www.example.org/DL/package-1.0.tar.xz» for a
tarball, «https://github.com/username/package.git» for a git repository, or
«/path/to/source_dir» for a local source tree may be used as an argument.

17.2 debmake -b
The debmake command with the -b option provides an intuitive and flexible method to create the initial
template debian/control file. This file defines the split of the Debian binary packages with the following
stanzas:

• Package:

• Architecture: (e.g. amd64)

• Multi-Arch: (see «Раздел 11.10»)

• Depends:

• Pre-Depends:

The debmake command also sets an appropriate set of substvars (substitution variables) used in
each pertinent dependency stanza.

Ниже приводится цитата соответствующей части страницы руководства debmake.

-b, --binaryspec ”binarypackage[:type], … ” set the binary package specs by a comma separated list
of binarypackage:type pairs. Here, binarypackage is the binary package name, and the optional
type is chosen from the following type values:

150

https://www.example.org/DL/package-1.0.tar.xz
https://github.com/username/package.git

ГЛАВА 17. DEBMAKE OPTIONS 17.3. DEBMAKE -B

• bin: C/C++ compiled ELF binary code package (any, foreign) (default, alias: ””, i.e., null-
string)

• data: Data (fonts, graphics, …) package (all, foreign) (alias: da)
• dev: пакет с библиотекой разработки (any, same) (псевдоним: de)
• doc: пакет документации (all, foreign) (псевдоним: do)
• lib: пакет с библиотекой (any, same) (псевдоним: l)
• perl: пакет со сценарием на языке Perl (all, foreign) (псевдоним: pl)
• python3: Python (version 3) script package (all, foreign) (alias: py3, python, py)
• ruby: пакет со сценарием на языке Ruby (all, foreign) (псевдоним: rb)
• nodejs: Node.js based JavaScript package (all, foreign) (alias: js)
• script: Shell and other interpreted language script package (all, foreign) (alias: sh)

The pair values in the parentheses, such as (any, foreign), are the Architecture and Multi-Arch
stanza values set in the debian/control file. In many cases, the debmake command makes good
guesses for type from binarypackage. If type is not obvious, type is set to bin.
Here are examples for typical binary package split scenarios where the upstream Debian source
package name is foo:

• Generating an executable binary package foo:
– «-b’foo:bin’», or its short form «-b’-’», or no -b option

• Generating an executable (python3) binary package python3-foo:
– «-b’python3-foo:py’», or its short form «-b’python3-foo’»

• Generating a data package foo:
– «-b’foo:data’», or its short form «-b’-:data’»

• Generating a executable binary package foo and a documentation one foo-doc:
– «-b’foo:bin,foo-doc:doc’», or its short form «-b’-:-doc’»

• Generating a executable binary package foo, a library package libfoo1, and a library development
package libfoo-dev:

– «-b’foo:bin,libfoo1:lib,libfoo-dev:dev’» or its short form «-b’-,libfoo1,libfoo-dev’»

Если содержимое дерева исходного кода не совпадает с настройками поля тип, то команда
debmake выводит предупреждение.

17.3 debmake -B
The debmake command invoked with the -B option can generate template files with .ex suffix. This is
handy if you want to see auto-generated template files to the existing ones.

17.4 debmake -x
Количество шаблонных файлов, создаваемых командой debmake зависит от опции -x[01234].

• See «Раздел 15.1» for cherry-picking of the template files.

Замечание

Команда debmake не меняет ни один из существующих файлов настройки.

151

	Предисловие
	Обзор
	Необходимые предварительные требования
	Люди вокруг Debian
	Как принять участие
	Социальная динамика Debian
	Техническая памятка
	Документация Debian
	Справочные ресурсы
	Ситуация с архивом
	Подходы к участию
	Начинающий участник и сопровождающий

	Настройка инструментов
	Email setup
	mc setup
	git setup
	quilt setup
	devscripts setup
	sbuild setup
	Persistent chroot setup
	gbp setup
	HTTP-прокси
	Частный репозиторий Debian
	Virtual machines
	Local network with virtual machines

	Simple packaging
	Packaging tarball
	Общая картина
	Что такое debmake?
	Что такое debuild?
	Шаг 1: получение исходного кода основной ветки разработки
	Step 2: Generate template files with debmake
	Шаг 3: изменение шаблонных файлов
	Step 4: Building package with debuild
	Step 3 (alternatives): Modification to the upstream source
	Patch by «diff -u» approach
	Patch by dquilt approach
	Patch by «dpkg-source --auto-commit» approach

	Basics for packaging
	Работа по созданию пакета
	debhelper package
	Имя пакета и версия
	Родной пакет Debian
	debian/rules file
	debian/control file
	debian/changelog file
	debian/copyright file
	debian/patches/* files
	debian/source/include-binaries file
	debian/watch file
	debian/upstream/signing-key.asc file
	debian/salsa-ci.yml file
	Other debian/* files

	Quality of packaging
	Reformat debian/* files with wrap-and-sort
	Validate debian/* files with debputy

	Check packaging with cme
	Sanitization of the source
	Fix with Files-Excluded
	Fix with «debian/rules clean»
	Fix with extend-diff-ignore
	Fix with tar-ignore
	Fix with «git clean -dfx»

	More on packaging
	Package customization
	Customized debian/rules
	Variables for debian/rules
	Новый выпуск основной ветки
	Manage patch queue with dquilt
	Build commands
	Note on sbuild
	Special build cases
	Upload orig.tar.xz
	Пропущенные загрузки
	Bug reports

	Продвинутые темы работы над пакетом
	Historical perspective
	Current trends
	Note on build system
	Непрерывная интеграция
	Предзагрузка
	Усиление безопасности компилятора
	Повторяемая сборка
	Переменные подстановки
	Пакет библиотеки
	Multiarch
	Split of a Debian binary package
	Сценарии и примеры разделения пакета
	Multiarch library path
	Multiarch header file path
	Multiarch *.pc file path
	Библиотека символов
	Library package name
	Смена библиотек
	Безопасная binNMU-загрузка
	Отладочная информация
	-dbgsym package
	debconf

	Packaging with git
	Salsa repository
	Salsa account setup
	Salsa CI service
	Branch names
	Patch unapplied Git repository
	Patch by «gbp-pq» approach
	Manage patch queue with gbp-pq
	gbp import-dscs --debsnap
	Note on gbp
	The Git repository browser
	Git commit history organization
	Quasi-native Debian packaging
	Patch applied Git repository
	Note on dgit

	Полезные советы
	Сборка с использованием кодировки UTF-8
	Преобразование в кодировку UTF-8
	Hints for Debugging

	Tool usages
	debdiff
	dget
	mk-origtargz
	origtargz
	git deborig
	dpkg-source -b
	dpkg-source -x
	debc
	bts
	dpkg-depcheck

	Дополнительные примеры
	Выборочное применение шаблонов
	Без Makefile (командная оболочка, интерфейс командной оболочки)
	Makefile (командная оболочка, интерфейс командной оболочки)
	pyproject.toml (Python3, CLI)
	Makefile (командная оболочка, графический интерфейс пользователя)
	pyproject.toml (Python3, GUI)
	Makefile (single-binary package)
	Makefile.in + configure (single-binary package)
	Autotools (single-binary package)
	CMake (single-binary package)
	Autotools (multi-binary package)
	CMake (multi-binary package)
	Интернационализация
	Детали

	Страница руководства debmake(1)
	НАЗВАНИЕ
	СИНТАКСИС
	ОПИСАНИЕ
	Positional arguments
	Options
	ПРИМЕРЫ
	ВСПОМОГАТЕЛЬНЫЕ ПАКЕТЫ
	ПРЕДОСТЕРЕЖЕНИЯ
	ОТЛАДКА
	АВТОР
	ЛИЦЕНЗИЯ
	СМОТРИТЕ ТАКЖЕ

	debmake options
	Shortcut option (-i)
	debmake -b
	debmake -B
	debmake -x

