debian

PykoBOoACTBO Anis conpoBoxaatouwmx Debian

Osamu Aoki JleB JlambepoB

8 peBpasnis 2026 .

PykoBoacTBO ans conposoxpgatowmux Debian
by Osamu Aoki /leB Jlambepos

Copyright © 2014-2026 Osamu Aoki

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

[aHHoe pykoBOACTBO 6bI10 CO34AHO Ha OCHOBE MHhopMaLMK, coepXalleiicss B CneayroLwmx AoKy-
MeHTax:
» «Co3gaHue naketa Debian (pykoBozcteo no debmake)», copyright © 1997 Oxanaxap Brnac

* «[lpaKTuyeckoe pyKoBOACTBO HOBOIO COMPOBOXAAILLETO N0 CO34aHnI0 nakeToB Debianx», copyright
© 1997 Yunn oy

» «PyKOBOACTBO HauvHawlero paspabortumka Debians, copyright © 1998—2002 [xocun PoguH,
2005—2017 Ocamy Aoku, 2010 Kpawir Cmonn, a Takke 2010 Padasnb Xepuor

MocnefHss Bepcusi AaHHOTO PyKOBOACTBA AOCTYMHA:

* B «nakeTte debmake-doc» un

* Ha «Beb-caiiTe [JokymeHTaunm Debian».

https://tracker.debian.org/pkg/debmake-doc
https://www.debian.org/doc/devel-manuals

OrnaBneHue

Mpepgucnosue
0630p

HeoGxogumblie npegBapuTenbHble TPeGOBaHUA

3.1 /MogmBokpyr Debian e
3.2 Kak NPUHATL YUACTUME o o o e e e e e e e e e e e e e e e
3.3 CoumanbHasa avHammka Debian Lo
3.4 TexXHNUYECKAA MAMATKE v v v it it i e e e e e e e e e e e e e
3.5 [JokymeHTaumsiDebian
3.6 CNpaBOYHBIE PECYPCHI . . v v v v v i e e e e e e e e e e e
3.7 CUTYaUMA C APXMBOM . . v v v v v e e e e e e e e e e e e e e e
3.8 TIOAXOABI KYHACTUIO . . . v v o v v e e i e e e e e e e e e e e e e
3.9 HauvHaloWMi yYaCTHNK U COMPOBOXOAKLWMA . . . v v v v v e e e e e e e e e e e e e

HacTtpoiika MHCTPYMEeHTOB

4.1 Email Setup
42 MCSEIUP . . . o o o e e
4.3 gitsetup. e
44 quiltsetup e e e
4.5 devscriptssetup e e e
46 sbuildsetup
4.7 Persistentchrootsetup
4.8 gbpsetup e e
4.9 HTTP-MPOKCU . . . o o e e e e e e s e e e e e e e e e e e e e e
4.10 YacTHbIli penosuTtopuid Debian L
4.11 Virtual machines e e e e
4.12 Local network with virtual machines L

Simple packaging

5.1 Packagingtarball
5.2 O0WAAKAPTUHA . . . o v v v vt e e e e e e e e e e
5.3 UrtoTakoe debmake?
54 UYrtoTakoedebuild?
5.5 UWar 1: nonyyeHne ncxogHoro koga OCHOBHOWM BETKM pa3paboTkm
5.6 Step 2: Generate template files with debmake
5.7 UWar 3: n3ameHeHue WabMoHHbIX (PaMIOB e
5.8 Step 4: Building package withdebuild 00 oL
5.9 Step 3 (alternatives): Maodification to the upstream source
5.10 Patch by «diff-u» approach
5.11 Patch by dquilt approach
5.12 Patch by «dpkg-source --auto-commit» approach

Basics for packaging

6.1 PaboTano CO3OAHMIO MAKETA . + . v v v v v v e v e e e e e e e e e e e e e
6.2 debhelper package
6.3 VIMANAKETA M BEPCUS o v v i vt e i e e e e e e e e e
6.4 PopgHoi makeT Debian e
6.5 debianfrulesfile
6.6 debian/controlfile
6.7 debianichangelogfile
6.8 debian/copyrightfile
6.9 debian/patches/*files
6.10 debian/sourcelinclude-binariesfile L oo oL

Ol'J/IABJ/IEHVIE

6.11 debian/watchfile L
6.12 debian/upstream/signing-key.ascfile
6.13 debian/salsa-ci.ymlfile L
6.14 Other debian/*files e

7 Quality of packaging
7.1 Reformat debian/* files with wrap-and-sort
7.2 Validate debian/* files with debputy o L

8 Check packaging with cme

9 Sanitization of the source
9.1 Fixwith Files-Excluded e
9.2 Fix with «debianfrulesclean»
9.3 Fix with extend-diff-ignore
9.4 Fixwithtar-ignore
9.5 Fixwith«gitclean-dfx»

10 More on packaging
10.1 Package customization e
10.2 Customized debianfrules
10.3 Variables for debianfrules
10.4 HOBbIN BbIMYCK OCHOBHOM BETKM . . . v v v v v v et e e e e e e e e e e e e e e e e e e
10.5 Manage patch queue withdquilt,
10.6 Build commands
10.7 Note onsbuild
10.8 Special buildcases e
10.9 Upload orig.tar.Xz e e e
10.101PONYLLEHHBIE 3ATPY3KM .« . o v o v v e e e e e e e e e e e e e
10.11BUQ FEPOITS . . o o o e e e e e e e

11 MpopaBUHYTble TeEMbl Pa6oTbl HaA NakeTom
11.1 Historical perspective
11.2 Currenttrends
11.3 Noteon build system e
11.4 HenpepbiBHAA MHTEIPALMS . .« v v v v o v e e e e e e e e e e e e e e e e
11.5 TIPEA3AIPY3KA . .« v v v v e e e e e e e e e e e e e e e e e
11.6 YcuneHue 6e30NacHOCTU KOMIUIIATOPA . .« « « v v v v v v v v e e e e e e e e e e e e
11.7 TIOBTOPAEMASA COOPKA . .+« o o v v e e e v e e e e e e e e e e e e e
11.8 MepeMeHHbIE MOACTAHOBKM v v v v v e i e e e e e e e e e e e e e e e e e e
11.9 MaKeT OUBIMOTEKM . . . o o o v v i e i e e e e e e e e e e e e e
11.10Multiarch . . o o
11.11Split of a Debian binary package
11.12CueHapuun 1 NPUMEPBI PA3AENEHUA MAKETA v v v v v v e it e e e e e e e
11.13Multiarch library path
11.14Multiarch header file path e
11.15Multiarch *.pcfilepath e
11.16BUBNNOTEKA CUMBOSOB .+« « v v v v v e e v e e e e e e e e e e e
11.17Library package name
11.18CMEHA BUBMIMOTEK . . . o o o o e e e e e e e e e e e
11.196e30nacHas binNMU-3arpy3ka o oo i i e e e e
11.200Tnaf0uHas UHAPOPMALIMST . . v . v v v e o e e e e e e e e e e e e e e e e e
11.21-dbgsym package e
11.22debconf

Ol'J/IABJ/IEHVIE

12 Packaging with git
12.1 Salsarepository e e e e
12.2 Salsa account Setup o oo e
12.3 Salsa ClserviCe e e
124 Branchnames e
12.5 Patch unapplied Gitrepository e e
12.6 Patch by «gbp-pg» approach
12.7 Manage patch queue withgbp-pq
12.8 gbp import-dscs --debsnap
129 Noteongbp
12.10The Git repository browser e
12.11Git commit history organization e e e e
12.12Quasi-native Debian packaging e
12.13Patch applied Git repository
12.14Note ondgit

13 MonesHble coBETbI
13.1 C6opka c UCNo/b30BaHNeM KOgUpoBkM UTF-8o oo
13.2 MNpeobpaszoBaHue B kogupoBky UTF-8
13.3 Hints for Debugging

14 Tool usages
4.1 debdiff
14.2.dget e
143 mk-origtargz e e
144 origtargz e e
145 gitdeborig
14.6 dpkg-source-b
14.7 dpKg-SOUICe =X e
148 debc
149 bts
14.10dpkg-depcheck L

15 JononHuTtenbHbIe NPpUMepbI
15.1 BbIOGOPOYHOE MPUMEHEHNE LUABMOHOB . . . v v v v v v e e e e e e e e e e e e e e e e
15.2 be3 Makefile (komaHgHas o6os04ka, MHTepdeiic KOMaHAHOW 060/104KM)
15.3 Makefile (komaHaHas 060n104ka, MHTepenc komaHaHOM 06OMOUKN)
15.4 pyproject.toml (Python3, CLI) e
15.5 Makefile (komaHgHas 060/104Ka, rpadnyecknin MHTepdeiic nonb3oeatens)
15.6 pyproject.toml (Python3, GUI) e
15.7 Makefile (single-binary package)
15.8 Makefile.in + configure (single-binary package)
15.9 Autotools (single-binary package) L oL
15.10CMake (single-binary package) e e e e e
15.11Autotools (multi-binary package) e
15.12CMake (multi-binary package)
I5.1FIHTEPHAUMOHAMNBALIMA . . . o o o v o v e e e e e e e e e e e e e
IS5 240 TANN . . . o e e e e e e e e e e e e

16 CrtpaHuua pykoBoactea debmake(1)
16.1 HABBAHUE e e e
16.2 CUHTAKCUIC e e
16.3 OMMNUCAHUVE e e e
16.4 Positional arguments e e e e e
16.5 Options e e
16.6 TIPUUMEPDI e e e
16.7 BCMOMOTATENIbHBIE MAKETbI s e e e e
16.8 MPEAOCTEPEXEHUA e e s e
16.9 OT/IALKA . . . o e

Ol'J/IABJ/IEHVIE

16.10ABTOP . . . o o e 149
6. AUTNLIEH3UA . . o o e e 149
16.12MOTPUTE TAKXKE o e e e e e e e s s e 149
17 debmake options 150
17.1 Shortcut option (-i) e e 150
17.2debmake-b e 150
17.3debmake-B e 151
17.4 debmake -X e 151

AHHOTauuA

[JaHHoe yyebHOe pyKOBOACTBO ONUCbIBAET CO0PKY naketa Debian ¢ nomoLusto komaHasl debmake v
npegHasHa4veHo g1 06blYHbIX Nosib3oBarteneit Debian n 6ygyLimnx pa3paboTunKoB.

PykoBOACTBO CKOHLEHTPUPOBAHO Ha COBPEMEHHOM CTW/IE CO34aHNA MaKeToB U COAEPXUT MHOXE-
CTBO MPOCTbIX NPYMEPOB:

« Co3gaHue nakeTa, cogepxallero cueHapuii KomaHgHon 060104kn POSIX
« Co3fgaHue nakeTa, cogepxallero cueHapuii Ha a3bike Python3

* C n Makefile/Autotools/CMake

¢ HeckonbKo ABOVYHbIX MAKETOB C pasaensiemMoin 6ubnnoTekon u T.4.

JaHHoe «PyKoBOACTBO A5 conposoxgarowmx Debian» MOXeT paccmarpmBaTbCs Kak 3ameHa «Py-
KOBOZCTBa HauuHatloLero paspabotynka Debian».

lnaBa l

NMpegnucnoBue

If you are a somewhat experienced Debian user 1, you may have encountered the following situations:
 YXenaHve ycTaHOBWUTb HEKOTOPbIA NakeT MO, KOTopbI MoKa 0TCyTCTBYET B apxuse Debian.
« XenaHne 06HOBUTL NakeT Debian g0 60nee cBEXEro Bbinycka U3 OCHOBHOM BETKM pa3paboTKu.
*)KenaHve ncnpaeuTb OWNGKKM B NakeTe Debian ¢ nomoubto 3annar.

If you want to create a Debian package to fulfill these needs and share your work with the community,
you are the target audience of this guide as a prospective Debian maintainer. 2 Welcome to the Debian
community.

Debian has many social and technical rules and conventions to follow, as it is a large volunteer
organization with a rich history. Debian has also developed an extensive array of packaging and archive
maintenance tools to build consistent sets of binary packages that address many technical objectives:

« packages have clearly specified package dependencies and patches and build correctly from scratch
in a clean build environment («Pa3gen 6.6», «Pa3gen 6.9», «Pa3nen 4.6»)

¢ packages build across many architectures («Pazgen 10.3»)

« builds are reproducible («Pazgen 11.7»)

« multiarch is supported («Pa3zgen 11.10»)

 bootstrapping new architectures is possible («Pazgen 11.5»)

« builds use specific compiler flags to harden security («Pasgen 11.6»)

¢ packages are split optimally into multiple binary packages («Pazgen 11.11»)

« library names and contents are managed to ensure smooth transitions on upgrades («Pa3zgen 11.18»)
« installations use interactive prompts correctly (if at all) (<Pa3zgen 11.22»)

e continuous integration is used to ensure quality («Pasgen 11.4»)

These factors can be overwhelming for many new prospective Debian maintainers. This guide aims
to provide entry points to help them get started. It covers the following:

» UTO criedyet 3HaTb A0 TOro, Kak 6biTb BOB/IEYEHHLIM B Debian B kauecTBe 6yayLLErO CONPOBOX-
[JaioLlero.

« Kak co3pgatb npocToii naket Debian.

» Kakue cyllecTByIoT Byl NPaBun Anas co3gaHus naketa Debian.

1You need to know a little about Unix programming, but you don’t need to be an expert. You can learn about basic Debian
system handling from the «Debian Reference». It also contains pointers for learning about Unix programming.

2If you're not interested in sharing the Debian package, you can address your local needs by compiling and installing the fixed
upstream source package into lusr/locall.

https://www.debian.org/doc/user-manuals#quick-reference

[7IABA 1. TIPEAVNC/IOBVE

« Tips for making the Debian package with minimal effort.
« Examples of making Debian packages in typical scenarios.

The author recognized the limitations of updating the original «<New Maintainers’ Guide» with the dh-
make package and decided to create an alternative tool with accompanying documentation to address
modern requirements such as multi-arch. This resulted in the debmake package, initially released as
version 4.0 in 2013. The current debmake version is 5.1.2. It comes with this updated «Guide for Debian
Maintainers» in the debmake-doc package (version: 1.27-1). (In 2016, dh-make was ported from Perl
to Python with updated features.)

Many chores and tips have been integrated into the debmake command allowing this guide to be
terse. This guide also offers many packaging examples for you to get started.

lMpepoctepexeHue

Ha cozgaHue 1 conpoBoxaeHune nakeTa Debian xopoluero kauecTsa yxoasiT MHO-
rme yacbl. [n1s1 BbINOMHEHUS] 3TON 3afaqn conpoBoxaatolmii Debian gomkeH
ObITb OIHOBPEMEHHO U TEXHUUYECKN KOMMETEHTHbIM, U YCEepPAHbIM.

Some important topics are explained in detail. While some may seem irrelevant to you, please be
patient. Certain corner cases are omitted, and some topics are only covered through external references.
These are intentional choices to keep this guide simple and maintainable.

https://www.debian.org/doc/manuals/debmake-doc/
https://www.debian.org/doc/manuals/debmake-doc/

naBa 2

O630p

The Debian packaging of the package-1.0.tar.xz, containing a simple C source following the «GNU
Coding Standards» and «FHS», can be done with the debmake command as follows.

[base_dir] $ tar --xz -xvf package-1.0.tar.xz
[base_dir] $ cd package-1.0
[package-1.0] $ debmake
. Make manual adjustments of generated configuration files
[package-1.0] $ debuild

Ecnu 6yaeT nponylieHa pyyHasi npaBka CO34aHHbIX HACTPOeYHbIX (daiifioB, TO B CO34aHHOM ABO-
MYHOM nakeTe GyAeT OTCYTCTBOBATb OCMbIC/IEHHOE OMMUCaHUE, HO OH GYAET BMojiHE pa6oTOCNOCOGHLIM
Mpw Mcnosib3oBaHUK koMaHabl dpkg 4151 ero /T0KasIbHOTO Pa3BEPThIBAHWS.

MpepocTepexeHve

files must be manually adjusted to their perfection to comply with the strict quality
requirements of the Debian archive, if the generated package is intended for
general consumption.

: The debmake command only provides decent template files. These template

If you are new to Debian packaging, focus on understanding the overall process rather than worrying
about the details.

If you are familiar with Debian packaging, you'll notice that debmake is similar to the dh_make
command. This is because debmake is designed to replace the functionality historically provided by
dh_make. 1

KomaHpa debmake nmeet cnegytolime BO3MOXHOCTU:

* COBpPEMEHHbIIi CTU/Ib CO3[laHNsI NAKETOB

- debian/copyright: «DEP-5» compliant
- debianl/control: substvar support, multiarch support, multi binary packages, ...
- debianl/rules: dh syntax, compiler hardening options, ...

* TMBKOCTb
— many options (see «Pa3gen 17.2», «[naea 16», and «naBa 17»)
* pasyMHble eACTBMS N0 YMOYaHUIo

— BbINO/IHEHNE 6E3 OCTAHOBOK C YACTbIMU pesynbraramu
— CO3gaHune MyJ/ibTUapXUTEKTYPHOrO NakeTa, eC/in ABHO HE YKa3aHa onuyusa -m.

— generate the non-native Debian package with the Debian source format «3.0 (quilt)», unless
the -n option is explicitly specified.

1Before dh_make, the deb-make command was popular. The current debmake package starts its version from 4.0 to avoid
version conflicts with the obsolete debmake package, which provided the «deb-make» command.

https://www.gnu.org/prep/standards/
https://www.gnu.org/prep/standards/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://dep-team.pages.debian.net/deps/dep5/

[7IABA 2. OB30P

The debmake command delegates most of the heavy lifting to its back-end packages: debhelper,
dpkg-dev, devscripts, sbuild, schroot, licensecheck, licenserecon, etc.

Moackaska

Ensure that you properly quote the arguments of the -b, -f, and -w options to
protect them from shell interference.

MNoackaska

HepopgHoit naket Debian — 06bI4HbIi NakeT Debian.

Moackaska

Moapo6HbIii XypHan BCex NPUMepPoB COOPKU NAKETOB U3 AaHHOW AOKYMeHTaLun

MOXHO NOAYYnUThb, cneaysa UHCTPYKUuAM U3 «Pa3gen 15.14».

rnaBa 3

Heobxogumble npenBapuTesibHble
TpeboBaHuA

Here are the prerequisites you need to understand before getting involved with Debian.

3.1 Jlopu Bokpyr Debian

CyLiecTByeT HECKO/IbKO TUNOB MtoAeii, B3aMmogeicTyowmx ¢ Debian B pamkax pasHblii poneii:
* ABTOp OCHOBHOI4 BETKU pa3paboTKu: TOT, KTO CO34a/1 UCXOAHYIO Nporpammy.

» ConpoBoXAaloLuii OCHOBHOW BETKM pa3pabGoTKUX: TOT, KTO B HACTOSILLIEE BPEMS CONPOBOXAAeT
nporpammy.

« ConpoBOXAaloLWuiA: TOT, KTO co3gaéTt nakeT Debian ¢ nporpammoii.

* MopyunTenb: TOT, KTO MOMOraeT CONPOBOXAAIOLMM 3arpyxatb NakeTbl B 0huLManibHbIi apxvB
naketoB Debian (nocne npoBepku COAEPXKMMOro NakeTos).

. MeHTop: TOT, KTO NOMOraeT Ha4nHaruwnmMm conposoXxgarwmm co3gaBaTb NakeTbl U MPOY.

« paspab6oTuuk Debian (DD): uneH npoekta Debian ¢ nofHbIMM NpaBamMu Ha 3arpysky B othuumasib-
Hblli apxmB naketoB Debian.

« conpoBoxgatowuii Debian (DM): TOT, KTO MMeET OrpaHUYEHHbIE MpaBa Ha 3arpy3ky B ogouuu-
anbHbI apxuB naketos Debian.

Please note that you can’t become an official Debian Developer (DD) overnight, as it requires more
than just technical skills. Don’t be discouraged by this. If your work is useful to others, you can still upload
your package either as a maintainer through a sponsor or as a Debian Maintainer.

Please note that you don't need to create new packages to become an official Debian Developer.
Contributing to existing packages can also provide a path to becoming an official Debian Developer.
There are many packages waiting for good maintainers (see «” Pa3gen 3.8»™).

3.2 Kak NpuHATb yyactue

UTtoObbl y3HaTb, Kak NpUHATL yyacTue B Debian, o6paTute BHMMaHWe He cnepyoLee:
» «Kak Bbl MOXeTe nomoyb Debian?» (othmumnanbHblii CTOUHMK)
¢ «The Debian GNU/Linux FAQ, Chapter 13 - Contributing to the Debian Project» (semi-official)
« «Debian Wiki, HelpDebian» (40N0AHNUTENbHbIA NCTOYHUK)
e «CaliT HOBbIX y4acTHMKoB Debian» (otmuymnanbHbIii NCTOUHMK)

* «4aBO anst meHTopoB Debian» (40NOAHUTENbHbIA UCTOYHUK)

https://www.debian.org/intro/help
https://www.debian.org/doc/manuals/debian-faq/contributing
https://wiki.debian.org/HelpDebian
https://nm.debian.org/
https://wiki.debian.org/DebianMentorsFaq

[7IABA 3. HEOBXOAVMBIE ... 3.3. COUNAJIBHAA ANNHAMUVKA DEBIAN

3.3 CouuanbHas guHamuka Debian

[nsa noarotoBku K B3aumogenctento ¢ Debian cneayet noHATL coumanbHyto AnHamunky Debian, koTopas
COCTOUT B CriefytoLwwem:

* We are all volunteers.

- You can't impose tasks on others.
— You should be self-motivated to do things.

o [IBMXyLLE CUNOol ABASIETCA APYXECKOE COTPYAHNYECTBO.

- Balle yyacTve He JO/MKHO Ype3MePHO AocaxJaTb OCTasIbHbIM.
- Baww BKkaj LeHEH TOSIbKO B TOM C/lyyae, eC/in ocTaslbHble BaM 3a HEro Npu3HaTe lbHbI.

< Debian is not a school where you get automatic attention from teachers.

— You should be able to learn many things independently.
— Attention from other volunteers is a scarce resource.

¢ Debian NnoCTOAHHO yny4luaeTcs.

- OT Bac oXnaaetcs, 4To Bbl ByaeTe co3faBaTb NakeTbl BbICOKOrO KauyecTBa.
— Bbl camy gomkHbI aAanTUpPoBaTbCst K USMEHEHUSIM.

MocKosibKy B OCTaBLLECS YacTW HACTOSILLETO PYKOBOACTBA Mbl KOHLEHTPUPYEMCS UCK/THOUNTENBHO
Ha TEXHUYECKUX acnekTax Co3faHus NakeToB, NOCTO/bKY YTO6bI MOHSATL CoLMasibHY0 AuHaMuky Debian,
pekoMeHayem 06paTuTbCs K CrieaytoLLeli JOKyMeHTaLum:

e «Debian: 17 years of Free Software, "do-ocracy”, and democracy» (Introductory slides by the ex-
DPL)

3.4 TexHunyeckass namMaTKa

Here are some technical reminders to help other maintainers work on your package easily and effectively,
maximizing the output of Debian as a whole.

* YNpocTuTe OT/1aKy Ballero nakera.

- [enaiiTe Baw NakeT NPOCTbIM.
- He ycnoxHsaiiTe Ball naker.

» XOpOoLLO AOKYMEHTVPYITE Ball NakKeT.

Vcnonb3yinte umtaemblil CTUAb A1 UICXOLHOTO Koga.

OcTaBnsiite B KO4e KOMMEHTapuun.

dopmaTtupyiite CBOI1 KOg, Be3€e 0ANHaKOBbIM 06pa3oMm.

ConpoBoxgaiiTe git-penosmTopuii 1 nakeTta.

3ameyaHune

Otnagka MO valle TpebyeT 60/bLIET0 KOIMYecTBa BpeMeHU, YeM HanvcaHve
n3HavyanbHO pabotatowero MO.

It is unwise to run your base system under the unstable suite, even for development purposes.

1Mopaenstoliee 60MLWMHCTBO conpoBoxgatolwmx Debian ncnonb3ylot git, a He gpyrme cuctembl ynpas/ieHVs BEPCUSMY,
Takve kak hg, bzr n 1.4.

http://upsilon.cc/~zack/talks/2011/20110321-taipei.pdf

[7IABA 3. HEOBXOAVMBIE ... 3.5. JOKYMEHTALVIA DEBIAN

¢ Creation and verification of binary deb packages should use a minimal unstable chroot as described
in «Pasgen 4.6».

¢ Basic interactive package development activities should use an unstable chroot as described in
«Pa3pen 4.7».

3ameyaHune

network daemons, and system installer packages, should use the unstable suite

@ Advanced package development activities, such as testing full Desktop systems,
running under «virtualization».

3.5 /[AokymeHTauusa Debian
Please make yourself ready to read the pertinent part of the latest Debian documentation to generate
perfect Debian packages:
» «Debian Policy Manual»
— The official «must follow» rules (https://www.debian.org/doc/devel-manuals#policy)
« «Debian Developer’'s Reference»
— The official «best practice» document (https://www.debian.org/doc/devel-manuals#devref)
¢ «Guide for Debian Maintainers» — this guide
- A «tutorial reference» document (https://www.debian.org/doc/devel-manuals#debmake-doc)

All these documents are published on https://www.debian.org using the unstable suite versions of
corresponding Debian packages. If you wish to have local access to all these documents from your base
system, please consider using techniques such as «apt-pinning» and «chroot».

Ecnn gaHHOe pykoBOACTBO NPOTUBOPEUNT othmumasnibHol AokymeHTauumn Debian, To BepHoli ABnseT-
€A nocnefHasn. B Takom cnydyae otrnpasbTe cooblleHre 06 owmnbke B nakete debmake-doc ¢ nomolubo
KoMaHzbl reportbug.

Takxke CyLlecTByeT creyoLas anbTepHaTMBHan BBOAHAA LOKYMEHTaLNsA, KOTOPYIO Bbl MOXETE Npo-
ymTaTb BMECTE C HACTOSALLMUM PYKOBOACTBOM:

« «Debian Packaging Tutorial»

- https://www.debian.org/doc/devel-manuals#packaging-tutorial
- https://packages.qa.debian.org/p/packaging-tutorial.html

« «Ubuntu Packaging Guide» (Ubuntu is Debian based.)
- http://packaging.ubuntu.com/html/
« «Debian New Maintainers’ Guide» (predecessor of this tutorial, deprecated)

- https://www.debian.org/doc/devel-manuals#maint-guide
- https://packages.qa.debian.org/m/maint-guide.html

Moackaska

When reading these, you may consider using the debmake command in place
of the dh_make command.

https://www.debian.org/doc/manuals/debian-reference/ch09.en.html#_multiple_desktop_systems
https://www.debian.org/doc/devel-manuals#policy
https://www.debian.org/doc/devel-manuals#devref
https://www.debian.org/doc/devel-manuals#debmake-doc
https://www.debian.org
https://www.debian.org/doc/manuals/debian-reference/ch02.en.html#_tweaking_candidate_version
https://en.wikipedia.org/wiki/Chroot
https://www.debian.org/doc/devel-manuals#packaging-tutorial
https://packages.qa.debian.org/p/packaging-tutorial.html
http://packaging.ubuntu.com/html/
https://www.debian.org/doc/devel-manuals#maint-guide
https://packages.qa.debian.org/m/maint-guide.html

[7IABA 3. HEOBXOAVMBIE ... 3.6. ClIPABOYHbIE PECYPChbI

3.6 CnpaBo4Hble pecypchbl

Before deciding to ask your question in a public forum, please do your part by reading the relevant
documentation:

* NHpopmaumio 0 nakeTe, [OCTYMHYHO € NOMOLbI0 kKoMaH/ aptitude, apt-cache n dpkg.
» Oalinobl B kKatanore lusrishareldoclnakem ans Bcex peneBaHTHbIX NaKeToB.

o CofepXnmoe man KkoMaHoa [/191 BCeX pesieBaHTHbIX KOMaHL,

* Cogepxumoe info komaHOa ANs BCEX penieBaHTHbIX KOMaH.

« Cogepxmnmoe «apxmea cnucka paccbiiku debian-mentors@lists.debian.org».

« Cogepxunmoe «apxmea cnucka paccbiiku debian-devel@lists.debian.org».

You can find your desired information effectively by using a well-formed search string such as "keyword
site:lists.debian.org” to limit the search domain of the web search engine.

Creating a small test package is a good way to learn the details of packaging. Inspecting existing
well-maintained packages is the best way to learn how other people make packages.

Ecnn y Bac BCE ellé ocTtasimcb BOMPOCHI MO MOBOAY CO34aHWA MakeToB, Bbl MOXeTe 3ajaTb UX B
CrefyoLLMX CNNCKaxX PacCblIKu:

» debian-mentors@lists.debian.org mailing list. (This mailing list is for the novice.)
 debian-devel@lists.debian.org mailing list. (This mailing list is for the expert.)

¢ IRC such as #debian-mentors.

< Teams focusing on a specific set of packages. (Full list at https://wiki.debian.org/Teams)
* CnNnCKN pacchblfikn, B KOTOPbIX NPUHATO 06LLaTbCS Ha OT/INYHBIX OT aHI/IMIACKOTO SA3bIKax.

- «debian-devel-{french,italian,portuguese,spanish}@lists.debian.org»

- «debian-chinese-gb@lists.debian.org» (This mailing list is for general (Simplified) Chinese
discussion.)

- «debian-devel@debian.or.jp»

More experienced Debian developers will gladly help you if you ask properly after making the required
efforts.

MpenocTepexeHve

Debian development is a moving target. Some information found on the web may
be outdated, incorrect, or non-applicable. Please use such information carefully.

3.7 Cutyauusi c apxuBom

Moxanyiicta, noimMnTe cUTyauuio ¢ apxusom Debian.
« B Debian yxe nmetotcsa naketbl A4nsi 60/bLLMHCTBA BUAOB NPOrpamm.

* Yucno naketoB B apxmee Debian yxe B HECKONbKO pa3 NPeBbILLAET YMC/I0 aKTUBHbIX COMNPOBOX-
[JatoLuX.

* K coxaneHuo, HeKOTopble NakeTbl HyXAalTCA B O/HKHOM BHUMaHUM COMPOBOXAAaloLINX.

https://lists.debian.org/debian-mentors/
https://lists.debian.org/debian-devel/
mailto:debian-mentors@lists.debian.org
mailto:debian-devel@lists.debian.org
https://www.debian.org/support#irc
https://wiki.debian.org/Teams
https://lists.debian.org/devel.html
https://lists.debian.org/debian-chinese-gb/
http://www.debian.or.jp/community/ml/openml.html#develML

[7IABA 3. HEOBXOAVMBIE ... 3.8. NOAXO4bl K YUYACTUIO

MoatoMy, yyactue B paboTe Hag yxe Ao6GaB/eHHbIMI B apXMB NakeTamu 60/1ee YeM LiEHHO 1 xena-
TeNbHO (M ropasfo 60/blie BEPOSATHOCTb NOJTYYMTb NOPYUUTENBCTBO AJ1s1 3arpy3Ku) CO CTOPOHbI ApYrux
COMPOBOXAAOLLMX.

Moackaska

The wnpp-alert command from the devscripts package can check for installed
packages that are up for adoption or orphaned.

Moackaska

The how-can-i-help package can show opportunities for contributing to Debian
based on packages installed locally.

3.8 MNopxopabl K y4acTuio

Huxe npuBoauTCst NCEBAOKOL HA NMUTOHONOAO6HOM A3bIKE, OMMCHIBAOLLMIA B MPOrPaMMHOM BUEBO3-
MOXHOCTW Ballero yyactusi B Debian:

if exist_in_debian(program):
if is_team_maintained(program):
join_team(program)
if is_orphaned(program): # maintainer: Debian QA Group
adopt_it(program)
elif is_RFA(program): # Request for Adoption
adopt_it(program)
else:
if need_help(program):
contact_maintainer(program)
triaging_bugs(program)
preparing_QA_or_NMU_uploads(program)
else:
leave_it(program)
else: # new packages
if not is_good_program(program):
give_up_packaging(program)
elif not is_distributable(program):
give_up_packaging(program)
else: # worth packaging
if is_ITPed_by_others(program):
if need_help(program):
contact_ITPer_for_collaboration(program)
else:
leave_it_to_ITPer(program)
else: # really new
if is_applicable_team(program):
join_team(program)
if is_DFSG(program) and is_DFSG(dependency(program)):
file ITP(program, area="main") # This is Debian
elif is_DFSG(program):
file_ITP(program, area="contrib") # This is not Debian
else: # non-DFSG
file ITP(program, area="non-free") # This is not Debian
package_it_and_close_ITP(program)

Mpe:

[7TABA 3. HEOBXOAVIMBIE ... 3.9. HAYUHAIOLLNI YHYACTHUK U ...

» [Ina doyHkuuin exist_in_debian() n is_team_maintained() Hy>XHO NpoBepuUTb C/eayoLLee:

- KOMaHAy aptitude
— Beb-CTpaHuLy «nakeTbl Debianx»
- Debian wiki «Teams» page

» [ns dyHkumii is_orphaned(), is_RFA() n is_ITPed_by_others() HyHO NnpoBepuTb cregyoLlee:

— BbIBOA, KOMaHAbl whpp-alert
— «nakeTbl TpebytoLme JopaboTkn 1 ByayLime»

— «KypHasibl OTYETOB 06 owmbkax Debian: owmnbkn B NceBaonaketTe wnpp B HeCTabu/bHOM
BbINyCKe»

— «nakeTbl Debian, KoTopbiM TpebyeTca BHMMaHue 1 3ab60Ta»
- «OLWMBKM B NakeTe wnpp no metkam debtag»

e Ana dpyHKumm is_good_program() Hy>XHO NPOBEPUTHL CriedytoLLee:

- nporpamma foshkHa 6bITb nosiesHa

— Mporpamma He YC/0XHSET NogAepXKy 6e30NacHOCTM U CONPOBOXAEeHUE cuctembl Debian

— Mporpamma XOpoLLlO AOKYMEHTMPOBaHA, a €€ Kof, NOHSATEH (TO eCTb, He 06¢hycuMpoBaH)

— aBTOpbI NPOrpaMmbl COrlaCHbI C CO34aHNEM NMakeTa 1 APYXECTBEHHO OTHOcATCA K Debian 2

e na doyHkumin is_it DFSG() nis_its_dependency DFSG() Hy>xHO NpoBepuTb crieaytoulee:
- «Kputepun Debian no onpegenenunto CeoboaHoro MO» (DFSG).

e [ins doyHkumn is_it_distributable() Hy>HO NpoBepUTbL CnepyloLlee:
- MO [OMKHO NMETL NNLEH3NIO U NIMLEH3UST AO/MKHA pa3peLlaTs pacrnpocTpaHeHue MO.

You either need to file an ITP or adopt a package to start working on it. See the «Debian Developer’s
Reference»:

¢ «5.1. HoBble NakeTbI».

¢ «5.9. lNepemelleHve, yganeHue, nepeMMmeHoBaHve, npuaaHue cratyca ocupoTeBLUero, YCbIHOB-
JleH/e 1 NOBTOPHOE BBEAEHME MNaKETOB».

3.9 HauuHawWmii y4aCTHUK U CONMPOBOXAAMLLNIA

HaunHaoLWmii y4acTHUK 1 CONPOBOXAIOLLMIA MOTYT HeAOyMeEBaTb N0 NOBO/Y TOFO, UTO Xe c/iedyeT U3y-
unTb, YTO6LI HAUaTb y4acTBOBaThb B Debian. Huke NpuBoasTCSt HEKOTOPbIE NPEAT0XKEHUS B 3aBUCMMOCTH
OT TOr0, YeM Bbl XOTWUTE 3aHNMATbCS.

* Co3paHve nakeTos

— OcHoBbI KOMaHgHoOIH 060no4uku POSIX 1 nHcTpymeHTa make.
- HekoTtopoe 3auyaroyHoe 3HaHue Perl n Python.

* MepeBog,
— OcHoBbI paboTbl cucteMbl nepesoga PO.
e [lokymeHTauuma
- Basics of text markups (XML, ReST, Wiki, ...).

Ha‘-II/IHaI'OLLI,I/IVI Y4acCTHUK U COI'IpOBO)K,q&I-OLLI,I/IVI MOryT HeaoymMmeBartb Mo noBoAy TOro, rae e Hadartb
ydyacTBoBaTb B Debian. Huxe npuBoAATCA HEKOTOpPbIE NpeaoXeHna B 3aBUCMMOCTN OT BallX HaBbIKOB.

2370 He siBNsieTcs abCOMOTHLIM TpeboBaHNeM. TeM He MeHee, Bpaxae6Hble pas3paboTumnkm OCHOBHOW BETKU MOTYT CTaTb TEM,
4To ByAeT onycTowaTtb pecypchl Bcex Hac. C Apy)XeCcTBEHHbIMM pa3paboTyrkamy MOXHO KOHCY/IbTUPOBATLCS B PeLUeHUN N00bIX
npo6siem ¢ NporpaMMoii.

10

https://www.debian.org/distrib/packages
https://wiki.debian.org/Teams
https://www.debian.org/devel/wnpp/
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=wnpp;dist=unstable
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=wnpp;dist=unstable
https://wnpp.debian.net/
https://wnpp-by-tags.debian.net/
https://www.debian.org/social_contract#guidelines
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#newpackage
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#archive-manip
https://www.debian.org/doc/manuals/developers-reference/pkgs.html#archive-manip

[7TABA 3. HEOBXOAVIMBIE ... 3.9. HAYUHAIOLLNI YHYACTHUK U ...

* HaBbikn paboTbl C KOMaHAHOIH 06onoukoil POSIX, Perl n Python:

- OTnpaenaiite 3annatbl 4715 NporpaMmbl ycTaHoBku Debian.

— Send patches to the Debian packaging helper scripts such as devscripts, sbuild, schroot,
etc. mentioned in this document.

e HaBblkn C 1 C++:
- OTnpaensiiTe 3annaTsl 419 NAKETOB, UMEOLMNX MPUOPUTETHLI required 1 important.
e HaBblkn paboTbl C OT/IMYHBLIMU OT @HI/INACKOTO A3bIKAMU:

- Otnpaensite 3annatbl ana PO-cainos nporpammbl ycTaHoBku Debian.
- Otnpasnsiite 3annarbl gnis PO-halinos nakeToB, MMeLWUX NpruopuTeThl required 1 important.

» HaBblKM HanucaHus fOKyMeHTaLWK:

— OG6HoBnsTe cogepxaHne «Debian Wiki».
- OTnpasnsiTe 3annaTtbl K CyLLecTBYyOLWel «A0KyMmeHTauun Debian».

3Ta AesATeNbHOCTb JacT BaM BO3MOXHOCTb NO3HAKOMUTLCS C APYrMMIK ydacTHUKamu Debian u ynyu-
LNTb BaLly penyTauuto.

HauvHatoweMy conpoBoxaarolemMy crneayet nsberatb paboTy Haf nakeTamu, cogepXallymim npo-
rPaMMbl C BbICOKMMW PUCKAMM B NiaHe 6e30MacHOCTU:

e nporpammbl, metoLme dnary goctyna setuid nnu setgid
¢ CNYXOblI
¢ nporpammbl, ycTaHaBnmeaemsble B katanoru Isbin/ nnu lusrisbin/

Korga Bbl nosyunTe 6osbllue onbiTa B paGoTe Hag, naketaMu, Bbl CMOXETe COo3faBaTb MakeTbl U C
TaKMMMU NporpamMmmamu.

11

https://wiki.debian.org/
https://www.debian.org/doc/

naBa 4

HacTpounka MHCTPYMEHTOB

B c60po4HOM OKpY>XEeHUM A0MKEH ObiTb YycTaHoB/eH nakeT build-essential.

The devscripts package should be installed in the development environment of the maintainer.

It is a good idea to install and set up all of the popular set of packages mentioned in this chapter.
These enable us to share the common baseline working environment, although these are not necessarily
absolute requirements.

Please also consider to install the tools mentioned in the «Overview of Debian Maintainer Tools» in
the «Debian Developer’s Reference», as needed.

MpepoctepexeHne

N MOryT ObiTb HeakTyaslbHbl MPU UCMOMb30BaHNM CaMbIX CBEXMX NakeToB. Pas-
paboTka Debian siBnsetca gsmxyuleiica uenbto. Ob6s3aTesibHO NpoYTUTE COOT-
BETCTBYIOLLYIO JJOKYMEHTALMIO N NPU HEOOGXOAMMOCTM 0B6HOBUTE HACTPOWKM.

: HacTpoiiku NHCTPYMEHTOB, NPeACTaB/IeHHbIE HUXE, ABNSIOTCS NNLb NPUMEPOM

4.1 Email setup

Pa3nimyHble MHCTPYMEHTBI CONPOoBOXAeHWA Debian Ha3HayaloT Ball afpec 3/1eKTPOHHOW NoYThl 1 Balle
UMS U3 NepemMeHHbIX okpyxxeHns SDEBEMAIL n SDEBFULLNAME.

Let’s set these environment variables by adding the following lines to ~/.bashrc 1.

[o6Gasbre B haiin ~/.bashrc

DEBEMAIL="osamu@debian.org"
DEBFULLNAME="0samu Aoki"
export DEBEMAIL DEBFULLNAME

3amMeyaHue

% The above is for the author of this manual. The configuration and operation
examples presented in this manual use these email address and name settings.

You must use your email address and name for your system.

1MpepgnonaraeTcs, YTO B KAUECTBE MHTEPAKTVBHON KOMaHAHOV 060104k C perucTpaumeli Bbl ncnonb3yete Bash. Ecnv Bbl
ncnosb3yeTe Kakyto-To APYryro KomaHaHyro 06010uky, Hanpumep, Zsh, To BMecTo ~/.bashrc Heo6x0AMMO N3MEHUTL COOTBETCTBY-
towye doaiinbl HaCTPOIKK.

12

https://www.debian.org/doc/manuals/developers-reference/tools.html

[7IABA 4. HACTPOVIKA MHCTPYMEHTOB 4.2. MC SETUP

4.2 mc setup

KomaHga mc npegnaraet BaMm NpocToii cnocob paboTtbl ¢ thainnamm. OHa MOXET OTKpblBaTb [BOWY-
Hble deb-chaiinbl 4NA NPOBEPKN NX COAEPXKMMOrO N0 NPOCTOMY HaXXaTuto KnaBuwn «Beog» npu Bbibope
COO0TBETCTBYOLWEro ABonyHoro deb-ghaiina. B kauecTBe gBmxka aTa nporpamma Mcnosib3yeT KoMmaHay
dpkg-deb. Hactponm eé Ha nogaepxky npoctoii dpyHkumm chdir cnegytowmm o6pasom.

Ao6aBbte B thaiin ~/.bashrc

mc related

if [-f /usr/lib/mc/mc.sh]; then
. /usr/1lib/mc/mc.sh

fi

4.3 (git setup

Ha cerogHsiluHWin AeHb KomMaHga git ABseTcs HeobxoANUMbIM MHCTPYMEHTOM A8 paboThbl C AEPEBOM
NCXOAHOr0 KoAa C UCTopueil.

Inob6asibHble NOMb30BaTe/IbCKME HACTPOIKM A1 KOMaHAb! git, Takne Kak Baly UMs 1 agpec 3fek-
TPOHHOI MOYTbI, MOXHO YCTaHOBUTL B dpaiine ~I.gitconfig cneaytowmum obpasom.

[~] $ git config --global user.name "Osamu Aoki"
[~] $ git config --global user.email osamu@debian.org

Ecnu Bbl NPUBLIK/IM NCMONBb30BaTbL KOMaHbI CVS nnu Subversion, To MOXeTe YCTaHOBUTb HECKOJ1IbKO
YKa3aHHbIX HXXe nNceBaoHMMOB KOMaHA.

[~] $ git config --global alias.ci "commit -a"
[~] $ git config --global alias.co checkout

MpoBepuTb Balun r106asibHbIE HACTPOWKMA MOXHO CAeayoLwmM 06pa3om.

[~]1 $ git config --global --list

Moackaska

[nsa adhdpekTNBHON paboThbl C NCTOPUEN git-peno3nTopust He06X0AMMO NCNOJb30-
Iy BaTb KaKoON-HUOYAb MHCTPYMEHT C rpadmyecknm UHTepdhelicom nosbL30Barens,

Hanpumep, gitk unu gitg.

4.4 quilt setup

KomaHga quilt npegnaraet npocTon MeTod 3anncy n3MeHeHunin. Ans paboTel ¢ naketamn Debian cne-
[yeT BbINOMHWTL HACTPOIKY Tak, YTOObI U3MEeHeHUs 3anucbiBaanch B kaTasor debian/patches/ BmecTo
katasiora patches/ no ymonuyaHuto.

UT0o6bl HE MEHATHL NMOBEAEHNE camoli KoMaHAabl quilt, co3gaamm nceBgoHnm dquilt gns pabotsl ¢
naketamu Debian, no6asuns cnegytowme ctpokm B thaiin ~.bashrc. Bropas cTpoka npegocTtaBnsieT Ko-
MaHge dquilt Ty)xe yHKUMOHa/IbHOCTb aBTOAO0MNO/THEHUS, YTO N 'Y KOMaHAbl quilt.

Aob6aBbte B thaiin ~/.bashrc

alias dquilt="quilt --quiltrc=${HOME}/.quiltrc-dpkg"
. /usr/share/bash-completion/completions/quilt
complete -F _quilt_completion $_quilt_complete_opt dquilt

Tenepb co3gaamm cdaiin ~l.quiltrc-dpkg co cnegylowmm cogepXXmmbiM.

13

[7IABA 4. HACTPOVIKA MHCTPYMEHTOB 4.5. DEVSCRIPTS SETUP

d=.

while [! -d $d/debian -a “readlink -e $d° '= /];
do d=$d/..; done

if [-d $d/debian] && [-z $QUILT_PATCHES]; then
if in Debian packaging tree with unset $QUILT_PATCHES
QUILT_PATCHES="debian/patches"
QUILT_PATCH_OPTS="--reject-format=unified"
QUILT_DIFF_ARGS="-p ab --no-timestamps --no-index --color=auto"
QUILT_REFRESH_ARGS="-p ab --no-timestamps --no-index"
QUILT_COLORS="diff_hdr=1;32:diff_add=1;34:diff_rem=1;31:diff_hunk=1;33:"
QUILT_COLORS="${QUILT_COLORS}diff_ctx=35:diff_cctx=33"
if ! [-d $d/debian/patches]; then mkdir $d/debian/patches; fi

fi

See quilt(1) and «How To Survive With Many Patches or Introduction to Quilt (quilt.html)» on how
to use the quilt command.

Ona npumepos ncnonb3oBaHua cMm. «Pasgen 5.9».

Note that «gbp pg» is able to consume existing debian/patches, automate updating and modifying
the patches, and export them back into debian/patches, all without using quilt nor the need to learn or
configure quilt.

4.5 devscripts setup

[na noanuceiBaHua naketa Debian Bawmm 3akpbiTbiM GPG-KNo4oM ncnosnb3yetcs koMaHza debsign,
BXogsLWasn B coctas naketa devscripts.

KomaHga debuild, Bxoasiwas B coctas naketa devscripts, cobvpaeTt ABOUYHbIA NakeT 1 NpoBepsieT
€ro C NomoLLblo komaHAp! lintian. MonesHo nveTb 6osee NOAPO6HbLIV BbIBOA KOMaHAb! lintian.

Bbl MOXETEe HAaCTPOUTbL 3T KOMaHApl B thaiine ~I.devscripts cnegytowmm o6pasom.

DEBUILD_DPKG_BUILDPACKAGE_OPTS="-i -I -us -uc"
DEBUILD_LINTIAN_OPTS="-i -I --show-overrides"
DEBSIGN_KEYID="Your_GPG_keyID"

The -i and -l options in DEBUILD_DPKG_BUILDPACKAGE_OPTS for the dpkg-source command
help rebuilding of Debian packages without extraneous contents (see «I1aBa 9»).

B HacTosilwee Bpemsa xopowo uMeTb RSA-kiod anuvHbl 4096 6uT, cm. «CosgaHne HoBoro GPG-
Koya».

4.6 sbuild setup

The sbuild package provides a clean room («chroot») build environment. It offers this efficiently with the
help of schroot using the bind-mount feature of the modern Linux kernel.

Since it is the same build environment as the Debian’s buildd infrastructure, it is always up to date
and comes full of useful features.

It can be customized to offer following features:

* The schroot package to boost the chroot creation speed.
 MakerT lintian npeaHa3HayeH 419 06HApPYXEeHNsT OLUMOOK B MakeTe.

* The piuparts package to find bugs in the package.

The autopkgtest package to find bugs in the package.

« MakeT ccache npegHasHayeH 415 yBEIMYEHNS CKOPOCTM paboThl gcc (Heoba3aTesibHO).

MakeT libeatmydatal npegHasHayeH g yBenuyeHns ckopoctu pabotsl dpkg (HeobsA3aTesnbHO).

* MapannensHblii 3anyck make no3BossieT yBeNMUUTb CKOPOCTL CHOPKM (HEO6A3ATENBHO).

14

file:///usr/share/doc/quilt/quilt.html
https://manpages.debian.org/unstable/git-buildpackage/gbp-pq.1.en.html
https://keyring.debian.org/creating-key.html
https://keyring.debian.org/creating-key.html
https://en.wikipedia.org/wiki/Chroot
https://buildd.debian.org/

[7IABA 4. HACTPOVIKA MHCTPYMEHTOB 4.6. SBUILD SETUP

Let's set up sbuild environment 2:

[~] $ sudo apt install sbuild piuparts autopkgtest lintian
[~] $ sudo apt install sbuild-debian-developer-setup
[~] $ sudo sbuild-debian-developer-setup -s unstable

Let’'s update your group membership to include sbuild and verify it:

[~]1 $ newgrp -
[-] $ id
uid=1000(<yourname>) gid=1000(<yourname>) groups=...,132(sbuild)

Here, «reboot of system» or «kill -TERM -1» can be used instead to update your group membership
3.

Let's create the configuration file ~l.locallsbuild/config.pl in line with recent Debian practice of
«source-only-upload» as:

[~] $ cat >~/.local/sbuild/config.pl << 'EOF'

g]
L A A A R R AR T R

PACKAGE BUILD RELATED (source-only-upload as default)
HAHHH B HAE R H AR HH R R R R R R R R R R R R R
-d

$distribution = 'unstable';
-A

$build_arch_all = 1;

-s

$build_source = 1;

--source-only-changes
$source_only_changes = 1;
-V

$verbose = 1;

HAHHH B HAE R H AR R R R R R R R R R R R R
POST-BUILD RELATED (turn off functionality by setting variables to 0)
HHHBHAHHHHH A H P H R R R R R R R R AR R
$run_lintian = 1;

$lintian_opts = ['-i', '-1I'];

$run_piuparts = 1;

$piuparts_opts = ['--schroot', 'unstable-amd64-sbuild'];

$run_autopkgtest = 1;

$autopkgtest_root_args = '';

$autopkgtest_opts = ['--', 'schroot', '%r-%a-sbuild'];

HHBHHBHBHHRHH AR H BB B R R R R R R R R R H R R
PERL MAGIC

HHHHHRH B R R R R R R R R R
1;

EOF

3amevyaHue

binary packages, and security uploads where you can’t do source-only-upload
but are required to upload with binary packages. The above configuration needs
to be adjusted for those exceptional cases.

There are some exceptional cases such as NEW uploads, uploads with NEW

2Be careful since some older HOWTOs may use different chroot setups.
3Simply «logout and login under some modern GUI Desktop environment» may not update your group membership.

15

https://wiki.debian.org/SourceOnlyUpload
https://wiki.debian.org/SourceOnlyUpload

[7IABA 4. HACTPOVIKA MHCTPYMEHTOB 4.7. PERSISTENT CHROOT SETUP

lNoackaska

You may need to add «$chroot_mode = ”schroot”;» to
ISy ~l.locallsbuild/config.pl for piuparts if it doesn’t work well under unshare. See

Debian bug: #1125784 and #1126127.

Following document assumes that sbuild is configured this way.
Edit this to your needs. Post-build tests can be turned on and off by assigning 1 or 0 to the corresponding
variables,

BHUMaHMe

@ Heobs3aTensbHble HaCTDOIzKM MOryT BbI3biBaTb OTpuUAaTeEsIbHbIE NMOCNEACTBUA.
OTK/IounTE NX B Ccny4ae COMHEHNA.

3ameyaHune

% MapannenbHsblii 3anyck make MOXET GbITb HEYAAUHLIM AJ151 HEKOTOPBIX Y)XXE NMe-
IOLLMXCA NAKETOB U MOXET CAENaTh XypHas COOPKM CIOXKHBIM A1 NMPOUTEHUS.

MNoackaska

Many sbuild related hints are available at «Pa3gen 10.7» and
«https://wiki.debian.org/sbuild» .

4.7 Persistent chroot setup

3ameyaHue

Use of independent copied chroot filesystem prevents contaminating the source
chroot used by sbuild.

For building new experimental packages or for debugging buggy packages, let's setup dedicated
persistent chroot «source:unstable-amd64-desktop» by:

[~] $ sudo cp -a /srv/chroot/unstable-amd64-sbuild /srv/chroot/unstable-amd64- «+
desktop

[~] $ sudo tee /etc/schroot/chroot.d/unstable-amd64-desktop-XXXXXX << EOF

[unstable-amd64-desktop]

description=Debian sid/amd64 persistent chroot

groups=root, sbuild

root-groups=root, shuild

profile=desktop

type=directory

directory=/srv/chroot/unstable-amd64-desktop

16

https://bugs.debian.org/1125784
https://bugs.debian.org/1126127
https://wiki.debian.org/sbuild

[7IABA 4. HACTPOVIKA MHCTPYMEHTOB 4.8. GBP SETUP

union-type=over lay
EOF

Here, desktop profile is used instead of sbuild profile. Please make sure to adjust /etc/schroot/desktop/fstab
to make package source accessible from inside of the chroot.
You can log into this chroot «source:unstable-amd64-desktop» by:

[~]1 $ sudo schroot -c source:unstable-amd64-desktop

4.8 gbp setup

The git-buildpackage package offers the gbp(1) command. Its user configuration file is ~/.gbp.conf.

Configuration file for "gbp <command>"

[DEFAULT]

the default build command:

builder = sbuild

use pristine-tar:

pristine-tar = True

Use color when on a terminal, alternatives: on/true, off/false or auto
color = auto

4.9 HTTP-npokcu

UT06bI COXpPaHUTb MPOMYCKHYIO CMOCOBHOCTL NPY 0bpaLleHnn K peno3ntopuio naketos Debian Bam cne-
[yeT HaCTPOWTb NOKaNbHbIA kawmpyowmii HTTP-npokcu. imeeTcsi HECKO/IbKO BapuaHTOB:

« CneuunannampoBaHHbIi kawmnpytowmii HTTP-npokcn, ncnonb3yowuin nakeT apt-cacher-ng.
e Generic HTTP caching proxy (squid package) configured by squid-deb-proxy package

In order to use this HTTP proxy without manual configuration adjustment, it's a good idea to install
either auto-apt-proxy or squid-deb-proxy-client package to everywhere.

4.10 YacTtHbI peno3utopuii Debian

Bbl MOXeTe HaCTPOMTb COBCTBEHHbIN peno3uTopuii naketos Debian ¢ NomoLbI0 NakeTa reprepro.

4.11 Virtual machines

For testing GUI application, it is a good idea to have virtual machines. Install virt-manager and gemu-
kvm packages.

Use of chroot and virtual machines allows us not to update the whole host PC to the latest unstable
suite.

4,12 Local network with virtual machines

In order to access virtual machines easily over the local network, setting up multicast DNS service
discovery infrastructure by installing avahi-utils is a good idea.

For all running virtual machines and the host PC, we can use each host name appended with .local
for SSH to access each other.

17

naBa 5

Simple packaging

There is an old Latin saying: «<Longum iter est per praecepta, breve et efficax per exempla» («It's a
long way by the rules, but short and efficient with examples»).

5.1 Packaging tarball

Hwxe npvBeaéH npumep co3gaHnsa npocToro naketa Debian 13 NpocToro ncxogHoro koga Ha si3bike C,
MCNosb3yloLlero B kayectse cuctemMbl c6opkn Makefile.
Let’'s assume this upstream tarball to be debhello-0.0.tar.xz.
MpegnonaraeTcs, 4TO ATOT TN UCXOLHOIO KoAa 6yeT YCTAHOB/IEH KaK HECUCTEMHbIV daiin:
Basics for the install from the upstream tarball

[base_dir] $ tar --xz -xmf debhello-0.0.tar.xz
[base_dir] $ cd debhello-0.0

[debhello-0.0] $ make

[debhello-0.0] $ make install

Debian packaging requires changing this «make install» process to install files to the target system
image location instead of the normal location under lustr/local.

3ameyaHue

Mpumepbl co3gaHmsa naketa Debian 13 gpyrux 6onee CAoXHbIX CUCTEM COOPKK

onuncaHbl B «[NnaBa 15».

5.2 OO0Lwan KapTuHa

The big picture for building a single non-native Debian package from the upstream tarball debhello-
0.0.tar.xz can be summarized as:

¢ The maintainer obtains the upstream tarball debhello-0.0.tar.xz and untars its contents to the
debhello-0.0 directory.

« KomaHga debmake go6asnsiet wabnoHHble dpanbl UCKkunTenbHO B katasior debian.

— The debhello_0.0.orig.tar.xz symlink is created pointing to the debhello-0.0.tar.xz file.
— ConpoBoxaawoLwuii HacTpamBaeT LWabnoHHble doaisbl.

« KomaHaa debuild cobupaeT ABOMYHBI NaKeT U3 NOArOTOB/IEHHOIO AepeBa UCXOAHOI0 Koaa.
- Co3spaéTtca chaiin debhello-0.0-1.debian.tar.xz, cogepxawuii katanor debian.

O6uas KapTMHa COOpPKU NakeTa

18

[7IABA 5. SIMPLE PACKAGING 5.3. UTO TAKOE DEBMAKE?

[base_dir] $ tar --xz -xmf debhello-0.0.tar.xz
[base_dir] $ cd debhello-0.0

[debhello-0.0] $ debmake

I: debmake (version: 5.1.2)

I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>

[debhello-0.0] $... manual customization of debian/* files
[debhello-0.0] $ debuild

Moackaska

The debuild command in this and following examples may be substituted by
equivalent commands such as the sbuild command.

Moackaska

in the .tar.xz and .tar.bz2 formats. The xz compression format offers the better

’ If the upstream tarball in the .tar.xz format is available, use it instead of the one
compression than the gzip and bzip2 compressions.

5.3 4rto takoe debmake?

3amMeyaHue

Actual packaging activities are often performed manually without using debmake
while referencing only existing similar packages and «Debian Policy Manual».

The debmake command is the helper script for the Debian packaging. («[nasa 16»)
« |t creates good template files for the Debian packages.
» OHa Bcerga yctaHaB/MBaeT 60MbLUMHCTBO OYEBUAHbIX OMNLMIA B pa3yMHble 3HAYEHUS.

» Co3paéT tar-apxvB OCHOBHOI BETKM pa3paboTku U HEO6GXOAVMYH0 CUMBOJIbHYHO CCbISIKY B C/lyyae
NX OTCYTCTBUSI.

* He nepenucbiBaeT cyllecTByoLWme gaiisibl HacTpoiiku B katanore debianl.
 MopaepXxunBaeT MybTUAPXUTEKTYPHbIE MaKeTbl.

« It provides short extracted license texts as debian/copyright using licensecheck to help license
review.

DTn BO3MOXHOCTM AenatoT paboTy ¢ naketamm Debian ¢ nomouwpio debmake npocToin n coBpemen-
HOM.

In retrospective, | created debmake to simplify this documentation. | consider debmake to be more-
or-less a demonstration session generator for tutorial purpose.

The debmake command isn't the only helper script to make a Debian package. If you are interested
alternative packaging helper tools, please see:

19

https://www.debian.org/doc/debian-policy/

I'7TABA 5.

SIMPLE PACKAGING 5.4. 4TO TAKOE DEBUILD?

¢ Debian wiki: «AutomaticPackagingTools» — Extensive comparison of packaging helper scripts

« Debian wiki: «CopyrightReviewTools» — Extensive comparison of copyright review helper scripts

5.4 Yto0 Ttakoe debuild?

Hwuxe npuBeaéH 0630p KoOMaHg, NOXoxux Ha komaHay debuild.

» ®alin debian/rules onpegenser To, kak 6yaeT cobpaH ABOUYHBIA NnakeT Debian.

« dpkg-buildpackage — ohmumansHas komaHga ans c60pkm A4BomyHOro naketa Debian. 19 06bIy-
HOW AIBONYHOI COOPKM OHa, rPy60 roBOpPs, BbIMO/THAET C/IEAYIOLLY0 NOC/1eA0BaTENIbHOCTb KOMaHA,:

«dpkg-source --before-build» (apply Debian patches, unless they are already applied)
«fakeroot debian/rules clean»

«dpkg-source --build» (build the Debian source package)

«fakeroot debian/rules build>»

«fakeroot debian/rules binary»

«dpkg-genbuildinfo» (generate a *.buildinfo file)

«dpkg-genchanges» (generate a *.changes file)

«fakeroot debian/rules clean»

«dpkg-source --after-build» (unapply Debian patches, if they are applied during --before-
build)
«debsign» (sign the *.dsc and *.changes files)

* Ecnun Bbl cnefoBaiv HCTPYKUMsM (cM. «Pasgen 4.5») n nepeganv nporpamme c6opku

onuuM -us U -uc, TO JaHHbIN Wwar 6yaeT nponyLleH, a Ansa noannucy TpebyeTcs BPYUHYIO
3anycTutb komaHay debsign.

« KomaHpga debuild npeactasnset coboli 06€pTky ansa komaHabl dpkg-buildpackage, kotopas co-
6upaeT ABOMYHbLIA NakeT Debian B okpyXeHUN ¢ NOAXOAAWMMUN 3HAYEHNSMUN NEPEMEHHBIX OKpPY-
XEHMS.

¢ The sbuild command is a wrapper script to build the Debian binary package under the proper
chroot environment with the proper environment variables.

3ameyaHune

Moppo6Hyto nHpopmauumio cm. B dpkg-buildpackage(1).

5.5 Lar 1: nonyyeHue NCXOO4HOro Koga OCHOBHOW BETKU paspa-
GOTKN

Mosy4nMM MCXOAHbIA KOA OCHOBHOW BETKN pa3paboTKu.
Download debhello-0.0.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-0.0.tar.xz

[base_dir] $ tar --xz -xmf debhello-0.0.tar.xz
[base_dir] $ tree

+-- debhello-0.0
| +-- Makefile

20

https://wiki.debian.org/AutomaticPackagingTools
https://wiki.debian.org/CopyrightReviewTools

[7IABA 5. SIMPLE PACKAGING 5.5. LWAT 1: TOJIYHEHWE NCXOA4HOIO ...

| +-- README.md

| +-- src

| +-- hello.c

+-- debhello-0.0.tar.xz

3 directories, 4 files

B HEM copepxuTcs ncxogHolli kog Ha sisbike C, hello.c, 40BOLHO NPOCTON.
hello.c

[base_dir] $ cat debhello-0.0/src/hello.c
#include <stdio.h>

int

main()

{
printf("Hello, world!\n");
return 0;

}

WNtak, Makefile cootBeTcTBYeT «CTaHgaptam HanucaHus koga GNU» n «CtaHgapTty nepapxuu gaii-
JI0BOI CUCTEMbI». A UMEHHO;

* cH0pPKY ABOMYHbIX halinos ¢ yuétom 3HaveHnin $(CPPFLAGS), $(CFLAGS), $(LDFLAGS) u T. .
* ycTaHOBKy ¢hainnos c yuétom $(DESTDIR) B kauecTBe Le/1ieBOro CUCTEMHOro obpasa
 ycTaHOBKy thainnos ¢ $(prefix), KOTOPbIA MOXHO U3MEHUTbL Ha Jusr

Makefile

[base_dir] $ cat debhello-0.0/Makefile
prefix = /usr/local

all: src/hello

src/hello: src/hello.c
@echo "CFLAGS=$(CFLAGS)" | \
fold -s -w 70 | \
sed -e 's/N/# /'
$(CC) $(CPPFLAGS) $(CFLAGS) $(LDCFLAGS) -0 $@ $~

install: src/hello
install -D src/hello \
$(DESTDIR)$(prefix)/bin/hello

clean:
-rm -f src/hello

distclean: clean

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello

.PHONY: all install clean distclean uninstall

3ameyaHune

B npuBeféHHOM Hxe npumepe npuMmeHeHue komaHapl echo k $(CFLAGS) uc-

Nosib3yeTcsi A1 NPOBEPKM HACTPOIKM CHOPOYUHBIX o1aroB.

21

https://www.gnu.org/prep/standards/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

[7IABA 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES ...

5.6 Step 2: Generate template files with debmake

BbiBog komaHabl debmake 10BosIbHO NoApo6eH, B HEM 0GbSACHEHbI BbIMO/HSIEMblE [eCTBUS, HaNpu-
Mep, KaK 3TO YKasaHO HUXE.

The output from the debmake command with -x1 option

[base_dir] $ cd debhello-0.0
[debhello-0.0] $ debmake -x1

I:
: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>

HHHHHHHHHHHHHHHHHHHHHHHHKMHHMHMHMMHKHHMHHHHH

debmake (version: 5.1.2)

[debhello-0.0] $ cd

: Non-native Debian package pkg="debhello", ver="0.0", rev="1" method="dir_d...
: already in the package-version form: "debhello-0.0"

[base_dir] $ ln -sf debhello-0.0.tar.xz debhello_0.0.orig.tar.xz
[base_dir] $ cd debhello-0.0

parsing option -b ""

binary package=debhello Type=bin / Arch=any M-A=foreign
build_type = make

: ext_type = c 1 files
: ext_type = md 1 files
: creating debian/* files with "-x 1" option

[debhello-0.0] $ licensecheck --recursive --copyright --deb-machine . > d...

: creating debian/copyright by licensecheck.

: creating debian/control from control.py

: creating debian/control by control.py

: creating debian/changelog from extra®_changelog

: creating debian/rules from extra@_rules

: creating debian/source/format from extra@source_format
: creating debian/README.Debian from extral_ README.Debian
: creating debian/README.source from extral_README.source
: creating debian/clean from extral_clean

: creating debian/dirs from extral_dirs

: creating debian/docs from extral_docs

: creating debian/examples from extral_examples

: creating debian/gbp.conf from extral_gbp.conf

: creating debian/links from extrail_links

: creating debian/manpages from extral_manpages

: creating debian/salsa-ci.yml from extral_salsa-ci.yml

: creating debian/watch from extralnn_watch

: creating debian/tests/control from extraltests_control
: creating debian/upstream/metadata from extralupstream_metadata
: creating debian/patches/series from extralpatches_series
: creating debian/install from extralbin_install

[debhello-0.0] $ wrap-and-sort -ast

: debian/* may have a blank line at the top.

KomaHga debmake co3gaét Bce wWwabnoHHble (halinbl Ha OCHOBE OnuuMii KOMaHAHO! CTPoKK. Mo-

CKOJIbKY HMKakue onuumu He 6bl1v nepefarbl, komaHaa debmake BbiGupaeT Ans Bac pasyMHble 3Have-
HWSA MO YMONYaHIo:

¢ Msa nakeTa ¢ ncxogHeim kogom: debhello

» Bepcusi ocHOBHOW BeTku pa3paboTku: 0.0

* Vima gBonyHoro naketa: debhello

* Homep pepakumm Debian: 1

» Tun naketa: bin (nakeT ¢ ABOMYHbIMK NCNOMHAEMbIMY haiitnammn hopmata ELF)

« The -x option: -x1 (without maintainer script supports for simplicity)

22

[7IABA 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES ...

3amMeyaHue

Here, the debmake command is invoked with the -x1 option to keep this tutorial
simple. Use of default -x2 or more extensive -x3 option is highly recommended.

MpoBepuM co3gaHHble WaboHHbIe haiisbl.
JepeBo NCxoQHOro Koga nocsie NnpocToro BbinonHeHus debmake.

[debhello-0.06] $ cd
[base_dir] $ tree

+-- debhello-0.0

+-- Makefile

+-- README.md

+-- debian

[+-- README.Debian
+-- README.source
+-- changelog
+-- clean
+-- control
+-- copyright

+-- dirs
+-- docs
+-- examples
+-- gbp.conf
+-- install
+-- links

I

I

|

I

I

|

I

I

|

I

I

[+-- manpages
[+-- patches
[| +-- series
I

I

I

I

I

I

I

I

I
4 -

+-- rules

+-- salsa-ci.yml
+-- source

| +-- format
+-- tests

| +-- control
+-- upstream

| +-- metadata
+-- watch

src

| +-- hello.c
+-- debhello-0.0.tar.xz
+-- debhello_0.0.orig.tar.xz -> debhello-0.0.tar.xz

8 directories, 25 files

daiin debianl/rules sBnsieTcA c60pPOUHLIM CLEHApPUEM, NPEAOCTaB/ISAEMbIM CONPOBOXAALLMM Na-
keta. Hwke npuBoanTcs ero wabnoHHbIi aiin, co3gaHHblil komaHgon debmake.
debian/rules (wa6noHHbI aiin):

[base_dir] $ cd debhello-0.0

[debhello-0.0] $ cat debian/rules

#!/usr/bin/make -f

You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)

This is an autogenerated template for debian/rules.

#

Output every command that modifies files on the build system.
#export DH_VERBOSE = 1

#

Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.

23

[7IABA 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES ...

#

See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options

#export DEB_BUILD_MAINT_OPTIONS = hardening=+all

Package maintainers to append CFLAGS

#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic

Package maintainers to append LDFLAGS

#export DEB_LDFLAGS_MAINT_APPEND = -W1,-01

With debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.

These are rarely used code. (START)
The following include for *.mk magically sets miscellaneous

variables while honoring existing values of pertinent
environment variables:

H oK HHHHHHH K

Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk

Vendor-related variables such as DEB_VENDOR:

#include /usr/share/dpkg/vendor .mk

Package-related variables such as DEB_DISTRIBUTION

#include /usr/share/dpkg/pkg-info.mk

#

You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)

#

These are rarely used code. (END)

#

main packaging script based on post dh7 syntax
%
dh $@

debmake generated override targets

Use "make prefix=/usr" (override prefix=/usr/local in Makefile)
#override_dh_auto_install:

dh_auto_install -- prefix=/usr

Do not install python .pyc .pyo if they exist
#override_dh_install:
dh_install --list-missing -X.pyc -X.pyo

Multiarch package requires library files to be installed to

/usr/lib/<triplet>/ . If the build system does not support

$(DEB_HOST_MULTIARCH), you may need to override some targets such as
dh_auto_configure or dh_auto_install to use $(DEB_HOST_MULTIARCH)

Mo cyTtu, aTo cTtaHgapTHbI hainn debian/rules ¢ komaHgoli dh. (0ns ygo6cTBa HACTPOWKN B HEM
COOEPXKNTCA HECKONBbKO 3aKOMMEHTMPOBAHHbIX CTPOK.)

daiin debian/control npegocTaBniseT 0CHOBHbIE MeTafaHHble nakeTa Debian. Hxe npreeaéH wab-
NOHHbIN ghalin, co3faHHblin komaHpo debmake.

debian/control (wa6noHHbI/ haiin):

[debhello-0.0] $ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.3

24

[7IABA 5. SIMPLE PACKAGING 5.6. STEP 2: GENERATE TEMPLATE FILES ...

Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no

#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/<project_site>

Package: debhello
Section: unknown
Architecture: any
Multi-Arch: foreign
Depends:
${misc:Depends},
${shlibs:Depends},
Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

===== This comes from the unmodified template file =====

Please edit this template file (debian/control) and other package files
(debian/*) to make them meet all the requirements of the Debian Policy
before uploading this package to the Debian archive.
See
* https://www.debian.org/doc/manuals/developers-reference/best-pkging-pract...
* https://www.debian.org/doc/manuals/debmake-doc/ch@5.en.html#control

The synopsis description at the top should be about 60 characters and
written as a phrase. No extra capital letters or a final period. No
articles b''-b'' "a", "an", or "the".

The package description for general-purpose applications should be
written for a less technical user. This means that we should avoid
jargon. GNOME or KDE is fine but GTK+ is probably not.

Use the canonical forms of words:
* Use X Window System, X11, or X; not X Windows, X-Windows, or X Window.
* Use GTK+, not GTK or gtk.
* Use GNOME, not Gnome.
* Use PostScript, not Postscript or postscript.

BHuMaHMe

@ If you leave «Section: unknown» in the template debian/control file unchanged,
the lintian error may cause the build to fail.

Since this is the ELF binary executable package, the debmake command sets «Architecture: any»
and «Multi-Arch: foreign». Also, it sets required substvar parameters as «Depends: ${shlibs:Depends},
${misc:Depends}». These are explained in «[naBa 6».

3ameyaHue

Please note this debian/control file uses the RFC-822 style as documented
% in «5.2 Source package control files — debian/control» of the «Debian Policy

Manual». The use of the empty line and the leading space are significant.

The debian/copyright file provides the copyright summary data of the Debian package using the
licensecheck command.

25

https://www.debian.org/doc/debian-policy/ch-controlfields.html#source-package-control-files-debian-control

[7IABA 5. SIMPLE PACKAGING 5.7. AT 3: UBMEHEHWE LLUAB/IOHHbIX ...

debian/copyright (wa6noHHbIl chaiin):

[debhello-0.0] $ cat debian/copyright

Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: FIXME

Upstream-Contact: FIXME

Source: FIXME

Disclaimer: Autogenerated by licensecheck

Files: ./Makefile
./README . md
./src/hello.c

Copyright: NONE

License: UNKNOWN
FIXME

5.7 LWar 3: nameHeHune WaoGOHHbIX (haiinos

OT conpoBoxaatoLLero TpebyeTcs BPYyUHY BHECTM HEKOTOPbIE N3MEHeHNs WabnoHHbIX ainnos.

In order to install files as a part of the system files, the $(prefix) value of lusr/local in the Makefile
should be overridden to be Jusr. This can be accommodated by the following the debian/rules file with
the override_dh_auto_install target setting «prefix=lusr».

debianl/rules (Bepcus conpoBoXxaaloLiero):

[base_dir] $ cd debhello-0.0
[debhello-0.0] $ vim debian/rules
. hack, hack, hack,
[debhello-0.0] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -W1, --as-needed

% :
dh $@

override_dh_auto_install:
dh_auto_install -- prefix=/usr

3kcnopTupoBaHue nepemMeHoit okpyxernnss DH_VERBOSE B chaiine debian/rules, kak 3To caenaHo
BbILLIE, MPMBOAUT K TOMY, 4TO MHCTPYMeHT debhelper co3gaét 6onee nogpo6HbIA OTHET 0 cOopKe.

Exporting DEB_BUILD_MAINT_OPTION as above sets the hardening options as described in the
«FEATURE AREAS/ENVIRONMENT> in dpkg-buildflags(1). 1

Exporting DEB_CFLAGS_MAINT_APPEND as above forces the C compiler to emit all the warnings.

Exporting DEB_LDFLAGS_MAINT_APPEND as above forces the linker to link only when the library
is actually needed. 2

The dh_auto_install command for the Makefile based build system essentially runs «$(MAKE)
install DESTDIR=debian/debhellox». The creation of this override_dh_auto_install target changes its
behavior to «<$(MAKE) install DESTDIR=debian/debhello prefix=/usr».

Here are the maintainer versions of the debian/control and debian/copyright files.

debian/control (Bepcus conpoBoXxaatoLero):

[debhello-0.0] $ vim debian/control

. hack, hack, hack,
[debhello-0.0] $ cat debian/control
Source: debhello

1This is a cliché to force a read-only relocation link for the hardening and to prevent the lintian warning «W: debhello:
hardening-no-relro usr/bin/hello». This is not really needed for this example but should be harmless. The lintian tool seems
to produce a false positive warning for this case which has no linked library.

2This is a cliché to prevent overlinking for the complex library dependency case such as Gnome programs. This is not really
needed for this simple example but should be harmless.

26

[7IABA 5. SIMPLE PACKAGING 5.7. AT 3: UBMEHEHWE LLUAB/IOHHbIX ...

Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.3
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello

Architecture: any

Multi-Arch: foreign

Depends:

${misc:Depends},

${shlibs:Depends},

Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

debian/copyright (Bepcusa conpoBoxpatouiero):

[debhello-0.0] $ vim debian/copyright
hack, hack, hack,
[debhello-0.0] $ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Let's remove unused template files and edit remaining template files:
« debian/README.source

< debian/patches/series (No upstream patch)

e clean

« dirs

« install

¢ links

LLa6noHHbIe haiinbl B debian/. (v=0.0):

27

[7IABA 5. SIMPLE PACKAGING 5.8. STEP 4: BUILDING PACKAGE WITH ..

[debhello-0.0] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-0.0] $ rm -f debian/README.source debian/source/*.ex
[debhello-0.0] $ rm -rf debian/patches

[debhello-0.0] $ tree -F debian

debian/

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- docs
+-- examples
+-- gbp.conf

+-- manpages

+-- rules*

+-- salsa-ci.yml
+-- source/

| +-- format
+-- tests/

| +-- control
+-- upstream/

| +-- metadata
+-- watch

4 directories, 14 files

Moackaska

Configuration files used by the dh_* commands from the debhelper package
usually treat # as the start of a comment line.

5.8 Step 4: Building package with debuild

B gaHHOM JepeBe MCXOAHOIo Kofa Bbl MOXETE C03A4aTb HEPOAHON nakeT Debian ¢ MOMOLLLH KOMaH-
Abl debuild nnn akBMBaneHTHbIX eii komaHa (cMm. «Pasgen 5.4»). BbiBOA KOMaHbl O4eHb Noapo6eH,
BbINO/IHSAEMbIE AENCTBUSA 0OBSCHSOTCA B HEM CeayoLMM 06pa3om.

Building package with debuild

[base_dir] $ cd debhello-0.0

[debhello-0.0] $ debuild

dpkg-buildpackage -us -uc -ui -i
dpkg-buildpackage: info: source package debhello
dpkg-buildpackage: info: source version 0.0-1
dpkg-buildpackage: info: source distribution unstable
dpkg-buildpackage: info: source changed by Osamu Aoki <osamu@debian.org>
dpkg-source -i --before-build .

dpkg-buildpackage: info: host architecture amdé64
debian/rules clean

dh clean

dh_auto_clean
make -j12 distclean

debian/rules binary

dh binary
dh_update_autotools_config
dh_autoreconf
dh_auto_configure
dh_auto_build

28

[7IABA 5. SIMPLE PACKAGING 5.8. STEP 4: BUILDING PACKAGE WITH ...

make -j12 INSTALL="install --strip-program=true"
make[1]: Entering directory '/path/to/base_dir/debhello-0.0'
CFLAGS=-g -02 -Werror=implicit-function-declaration

Finished running lintian.

You can verify that CFLAGS is updated properly with -Wall and -pedantic by the DEB_CFLAGS_MAINT_APPENL
variable.

The manpage should be added to the package as reported by the lintian package, as shown in later
examples (see «IaBa 15»). Let's move on for now.

MpoBepuM pe3ynsTar cOopKM.

®daiinbi debhello Bepcuu 0.0, co3gaHHble ¢ NoMoLbio KoMaHabl debuild:

[debhello-0.0] $ cd ..
[base_dir] $ tree -FL 1

+-- debhello-0.0/

+-- debhello-0.0.tar.xz

+-- debhello-dbgsym_0.0-1_amd64.deb

+-- debhello_0.0-1.debian.tar.xz

+-- debhello_0.0-1.dsc

+-- debhello_0.0-1_amd64.build

+-- debhello_0.0-1_amd64.buildinfo

+-- debhello_0.0-1_amd64.changes

+-- debhello_0.0-1_amd64.deb

+-- debhello_0.0.orig.tar.xz -> debhello-0.0.tar.xz

2 directories, 9 files
Bbl BUAMTE BCE CO3faHHbIe thainbl.
e The debhello_0.0.orig.tar.xz is a symlink to the upstream tarball.
e debhello_0.0-1.debian.tar.xz cogepxuT haiinbl, Co3gaHHbIE CONPOBOXAAOLLMM.

« debhello_0.0-1.dsc npeacraensiet coboii daiin ¢ MeTagaHHbIMK AN naketa Debian ¢ ncxogHbiv
KOAOoM.

* debhello_0.0-1_amd64.deb — asounuHbiii nakeT Debian.

* The debhello-dbgsym_0.0-1_amd64.deb is the Debian debug symbol binary package. See «Pa3-
nen 11.21».

¢ The debhello_0.0-1_amd64.build file is the build log file.
* The debhello_0.0-1_amdé64.buildinfo file is the meta data file generated by dpkg-genbuildinfo(1).
« debhello_0.0-1_amd64.changes — chaiin ¢ meTagaHHbIMU 415 ABOMYHOro naketa Debian.

debhello_0.0-1.debian.tar.xz cogepxut nsmeHenms Debian, BHECEHHbIE B MICXOAHBIA KO OCHOBHOVA
BETKM pa3paboTku. Cogepxmmoe 3Toro doaina npuBeaeHo HUXe.
Copepxumoe apxusa debhello_0.0-1.debian.tar.xz:

[base_dir] $ tar --xz -tf debhello-0.0.tar.xz
debhello-0.0/

debhello-0.0/src/

debhello-0.0/src/hello.c
debhello-0.0/Makefile

debhello-0.0/README.md

[base_dir] $ tar --xz -tf debhello_0.0-1.debian.tar.xz
debian/

debian/README.Debian

debian/changelog

debian/control

debian/copyright

debian/docs

29

[7IABA 5. SIMPLE PACKAGING 5.8. STEP 4: BUILDING PACKAGE WITH ..

debian/examples
debian/gbp.conf
debian/manpages
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

The debhello_0.0-1_amdé64.deb contains the binary files to be installed to the target system.

The debhello-dbgsym_0.0-1_amd64.deb contains the debug symbol files to be installed to the
target system.

The binary package contents of all binary packages:

[base_dir]
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-Xxr-x
drwxr-xr-x
-rwW-r--r--
drwxr-xr-x
drwxr-xr-x
TrwXrwxrwx
[base_dir]
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
-rWXr -Xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
-rwW-r--r--
-rw-r--r--
-rwW-r--r--

$ dpkg -c debhello-dbgsym_0.0-1_amd64.deb

root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root

4

./usr/

./usr/1ib/

./usr/1ib/debug/
./usr/1ib/debug/.build-id/
./usr/1ib/debug/.build-id/00/
./usr/1ib/debug/.build-i1d/00/d21e230186d135c41c9540. ..
./usr/share/

./usr/share/doc/
./usr/share/doc/debhello-dbgsym -> debhello

$ dpkg -c debhello 0.0-1_amd64.deb

root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root

./

./usr/

./usr/bin/

./usr/bin/hello

./usr/share/

./usr/share/doc/

./usr/share/doc/debhello/
./usr/share/doc/debhello/README.Debian
./usr/share/doc/debhello/changelog.Debian.gz
./usr/share/doc/debhello/copyright

The generated dependency list of all binary packages.
The generated dependency list of all binary packages (v=0.0):

[debhello-0.0] $ dpkg -f debhello-dbgsym_0.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends:

debhello (= 0.0-1)

[debhello-0.0] $ dpkg -f debhello_0.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends:

libc6 (>= 2.34)

Mpepocte

O

pexeHve

Many more details need to be addressed before uploading the package to the
Debian archive.

30

[7IABA 5. SIMPLE PACKAGING 5.9. STEP 3 (ALTERNATIVES): ...

3amMeyaHue

Ecnu Bbl MPONYyCTWU/IN PYYHYHO HACTPOIKY aBTOMAaTUYECKN CO34aHHbIX KOMaHAOoM
debmake haiinos HacTpoliku, TO y CO34aHHOr0 ABOVMYHOIO NakeTa MOXeT OTCYyT-
CTBOBaTb NOHATHOE APYrMM OMMCaHMe NakeTa, a Takke naket MOXeT HECOOTBET-
CTBOBaTb HEKOTOPbLIM TPEOOBAHUSAM MOMIMTUKN. TakoW CbIPOi NakeT BMOJSIHE XO-

powio pa6oTaerT, ecnin nepeaats ero komaHze dpkg, 1 MOXET okasaTbCs BrosiHe
[OCTATOUYHbIM /151 €0 /IOKA/ILHOTO Pa3BEPTLIBAHMS.

5.9 Step 3 (alternatives): Modification to the upstream source

The above example did not touch the upstream source to make the proper Debian package. An alternative
approach as the maintainer is to modify files in the upstream source. For example, Makefile may be
modified to set the $(prefix) value to lusr.

3ameyaHune

The above «Pa3gen 5.7» using the debianl/rules file is the better approach for
% packaging for this example. But let's continue on with this alternative approaches

as a leaning experience.

In the following, let’s consider 3 simple variants of this alternative approach to generate debian/patches/*
files representing modifications to the upstream source in the Debian source format «3.0 (quilt)». These
substitute «Pa3gen 5.7» in the above step-by-step example:

* «Pa3gen 5.10»
* «Pa3gen 5.11»
* «Pa3gen 5.12»

Please note the debian/rules file used for these examples doesn't have the override_dh_auto_install
target as follows:
debian/rules (anbTepHaTUBHaA BepcUusi CONPOBOXAAIOLLEro):

[base_dir] $ cd debhello-0.0
[debhello-0.0] $ vim debian/rules

. hack, hack, hack,
[debhello-0.0] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -W1, --as-needed
%:

dh $@

5.10 Patch by «diff -u» approach

Here, the patch file 000-prefix-usr.patch is created using the diff command.
Patch by diff -u

[base_dir] $ cp -a debhello-0.0 debhello-0.0.orig
[debhello-0.0] $ vim debhello-0.0/Makefile
. hack, hack, hack,

31

[7IABA 5. SIMPLE PACKAGING 5.11. PATCH BY DQUILT APPROACH

[base_dir] $ diff -Nru debhello-0.0.orig debhello-0.0 >000-prefix-usr.patch
[base_dir] $ cat 000-prefix-usr.patch

diff -Nru debhello-0.0.orig/Makefile debhello-0.0/Makefile

--- debhello-0.0.orig/Makefile 2026-02-03 08:55:45.275309668 +0000

+++ debhello-0.0/Makefile 2026-02-03 08:55:45.354384730 +0000

@@ -1,4 +1,4 @@

-prefix = /usr/local

+prefix = /usr

all: src/hello

[base_dir] $ rm -rf debhello-0.0
[base_dir] $ mv -f debhello-0.0.0orig debhello-0.0

Please note that the upstream source tree is restored to the original state after generating a patch
file 000-prefix-usr.patch.

This 000-prefix-usr.patch is edited to be DEP-3 conforming and moved to the right location as below.

000-prefix-usr.patch (DEP-3):

[debhello-0.0] $ echo '000-prefix-usr.patch' >debian/patches/series
[debhello-0.0] $ vim ../000-prefix-usr.patch
hack, hack, hack,
[debhello-0.0] $ mv -f ../000-prefix-usr.patch debian/patches/000-prefix-usr....
[debhello-0.0] $ cat debian/patches/000-prefix-usr.patch
From: Osamu Aoki <osamu@debian.org>
Description: set prefix=/usr patch
diff -Nru debhello-0.0.orig/Makefile debhello-0.0/Makefile
--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile
@@ '114 +1I4 @@
-prefix = /usr/local
+prefix = /usr

all: src/hello

3ameyaHune

When generating the Debian source package by dpkg-source via dpkg-

buildpackage in the following step of «Paznen 5.8», the dpkg-source command

assumes that no patch was applied to the upstream source, since the
.pclapplied-patches is missing.

5.11 Patch by dquilt approach

Here, the patch file 000-prefix-usr.patch is created using the dquilt command.

dquilt is a simple wrapper of the quilt program. The syntax and function of the dquilt command
is the same as the quilt(1) command, except for the fact that the generated patch is stored in the
debian/patchesl/ directory.

Patch by dquilt

[debhello-0.0] $ dquilt new 000-prefix-usr.patch

Patch debian/patches/000-prefix-usr.patch is now on top

[debhello-0.0] $ dquilt add Makefile

File Makefile added to patch debian/patches/000-prefix-usr.patch
hack, hack, hack,

[debhello-0.0] $ head -1 Makefile

prefix = /usr

[debhello-0.0] $ dquilt refresh

32

https://dep-team.pages.debian.net/deps/dep3/

[7IABA 5. SIMPLE PACKAGING 5.11.

PATCH BY DQUILT APPROACH

Refreshed patch debian/patches/000-prefix-usr.patch
[debhello-0.0] $ dquilt header -e --dep3

. edit the DEP-3 patch header with editor
[debhello-0.0] $ tree -a

+-- .pcC
| +-- .quilt_patches
| +-- .quilt_series
| +-- .version
| +-- 000-prefix-usr.patch
| [+-- .timestamp
| [+-- Makefile
| +-- applied-patches
+-- Makefile
+-- README.md
+-- debian
| +-- README.Debian
| +-- README.source
| +-- changelog
| +-- clean
| +-- control
| +-- copyright
| +-- dirs
| +-- docs
| +-- examples
| +-- gbp.conf
| +-- install
| +-- links
| +-- manpages
| +-- patches
| | +-- 000-prefix-usr.patch
| | +-- series
| +-- rules
| +-- salsa-ci.yml
| +-- source
| [+-- format
| +-- tests
| [+-- control
| +-- upstream
| | +-- metadata
| +-- watch
+-- src
+-- hello.c

9 directories, 30 files

[debhello-0.0] $ cat debian/patches/series
000-prefix-usr.patch

[debhello-0.0] $ cat debian/patches/000-prefix-usr.patch
Description: set prefix=/usr patch

Author: Osamu Aoki <osamu@debian.org>

Index: debhello-0.0/Makefile

--- debhello-0.0.orig/Makefile
+++ debhello-0.0/Makefile

@@ '114 +1I4 @@

-prefix /usr/local

+prefix /usr

all: src/hello

Here, Makefile in the upstream source tree doesn’t need to be restored to the original state for the

packaging.

33

[7IABA 5. SIMPLE PACKAGING 5.12. PATCH BY «DPKG-SOURCE ...

3amMeyaHue

buildpackage in the following step of «Pa3nen 5.8», the dpkg-source command
assumes that patches were applied to the upstream source, since the
.pclapplied-patches exists.

When generating the Debian source package by dpkg-source via dpkg-

The upstream source tree can be restored to the original state for the packaging.
The upstream source tree (restored):

[debhello-0.0] $ dquilt pop -a
Removing patch debian/patches/000-prefix-usr.patch
Restoring Makefile

No patches applied

[debhello-0.0] $ head -1 Makefile
prefix = /usr/local
[debhello-0.0] $ tree -a .pc

.pc

+-- .quilt_patches
+-- .quilt_series
+-- .version

1 directory, 3 files

Here, Makefile is restored and the .pclapplied-patches is missing.

5.12 Patch by «dpkg-source --auto-commit» approach

Here, the patch file isn’'t created in this step but the source files are setup to create debian/patches/*
files in the following step of «Pa3gen 5.8».

For this, debmake must be invoked without -x1 option to generate normal template files using default
-X2 option, instead.

The output from the debmake command

[base_dir] $ cd debhello-0.0

[debhello-0.0] $ debmake

I: debmake (version: 5.1.2)

I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>

OTpenakTMpyeM UCXOAOHbI KO, OCHOBHOW BETKM pa3paboTKu.
Modified Makefile

[debhello-0.0] $ vim Makefile

. hack, hack, hack,
[debhello-0.0] $ head -nl1 Makefile
prefix = /usr

Let’s edit debian/sourceloptions:
debian/sourcel/options for auto-commit

[debhello-0.0] $ mv debian/source/options.ex debian/source/options
[debhello-0.0] $ vim debian/source/options
. hack, hack, hack,
[debhello-0.0] $ cat debian/source/options
== Patch applied strategy (merge) ==
#
The source outside of debian/ directory is modified by maintainer and
different from the upstream one:
* Workflow using dpkg-source commit (commit all to VCS after dpkg-source ...
https://www.debian.org/doc/manuals/debmake-doc/ch@4.en.html#dpkg-sour. ..

34

[7IABA 5. SIMPLE PACKAGING 5.12. PATCH BY «DPKG-SOURCE ...

* Workflow described in dgit-maint-merge(7)
#

single-debian-patch

auto-commit

Let’s edit debian/sourcelpatch-header:
debian/sourcel/patch-header for auto-commit

[debhello-0.0] $ mv debian/source/patch-header.ex debian/source/patch-header
[debhello-0.0] $ vim debian/source/patch-header
. hack, hack, hack,
[debhello-0.0] $ cat debian/source/patch-header
Description: debian-changes
Author: Osamu Aoki <osamu@debian.org>

Let's remove debian/patches/* files and other unused template files.
Remove unused template files

[debhello-0.0] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-0.0] $ rm -f debian/README.source debian/*.ex debian/source/*.ex
[debhello-0.0] $ rm -rf debian/patches

[debhello-0.0] $ tree debian

debian

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- docs
+-- examples
+-- gbp.conf
+-- manpages
+-- rules

+-- salsa-ci.yml

+-- source

| +-- format

| +-- options

| +-- patch-header
+-- tests

| +-- control

+-- upstream

| +-- metadata

+-- watch

4 directories, 16 files

There are no debian/patches/* files at the end of this step.

3ameyaHue

When generating the Debian source package by dpkg-source via dpkg-

buildpackage in the following step of «Pa3gen 5.8», the dpkg-source command
uses options specified in debian/sourceloptions to auto-commit modification
applied to the upstream source as patches/debian-changes.

Let's inspect the Debian source package generated after the following «Pa3gen 5.8» step and extracting
files from debhello-0.0.debian.tar.xz.
Inspect debhello-0.0.debian.tar.xz after debuild

[base_dir] $ tar --xz -xvf debhello_0.0-1.debian.tar.xz
debian/

debian/README.Debian

debian/changelog

debian/control

35

[7IABA 5. SIMPLE PACKAGING 5.12. PATCH BY «DPKG-SOURCE ...

debian/copyright
debian/docs
debian/examples
debian/gbp.conf
debian/manpages
debian/patches/
debian/patches/debian-changes
debian/patches/series
debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/source/options
debian/source/patch-header
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

Let's check generated debian/patches/* files.
Inspect debian/patches/* after debuild

[base_dir] $ cat debian/patches/series
debian-changes

[base_dir] $ cat debian/patches/debian-changes
Description: debian-changes

Author: Osamu Aoki <osamu@debian.org>

--- debhello-0.0.0rig/Makefile
+++ debhello-0.0/Makefile

@@ '114 +1I4 @@

-prefix = /usr/local

+prefix = /usr

all: src/hello

The Debian source package debhello-0.0.debian.tar.xz is confirmed to be generated properly with
debian/patches/* files for the Debian modification.

36

FnaBa 6

Basics for packaging

Here, a broad overview is presented without using VCS operations for the basic rules of Debian packaging
focusing on the non-native Debian package in the «3.0 (quilt)» format.

3ameyaHune

% [ns acHOCTM B painibHelwem Oblan YMbIWIEHHO ONyLLEHbl HEKOTOpble Ae-
Tasin. O3HakombTeCb CO cTpaHuuamu pykosoactBa dpkg-source(l), dpkg-

buildpackage(1), dpkg(1), dpkg-deb(1), deb(5) n gp.

MakeT Debian ¢ uCXo4HbIM KOAOM SABMSIETCS HAOOPOM BXOAHbIX (dainNoB, MCNONb3yeMbIX A/151 COOPKM
ABomnyHoro naketa Debian, 1 He npeacTaBnsieT coboi ToNbKO 0AuH chaiin.

The Debian binary package is a special archive file which holds a set of installable binary data with
its associated information.

OpuH nakeT Debian ¢ CXO4HBIM KOAOM MOXET MCNO/1b30BaTbCA [/151 CO34aHUS HECKOSTbKNX ABOVNYHbIX
naketoB Debian, onpegensiembix B haiine debian/control.

The non-native Debian package in the Debian source format «3.0 (quilt)» is the most normal Debian
source package format.

3amMeyaHue

% CyLLEeCBTYET MHOXECTBO 0OEPTOUHbIX CLeHapueB. cnonbayiite nx gns ynpotie-
HWs BaLleli paboTbl, HO 06513aTeNbHO pa3bepuTecs C OCHOBaMW UX BHYTPEHHETO

yCTpoiicTBa.

6.1 Pa6GoTa no co3gaHuio naketa

The Debian packaging workflow to create a Debian binary package involves generating several specifically
named files (see «Pa3gen 6.3») as defined in the «Debian Policy Manual». This workflow can be summarized
in 10 steps with some over simplification as follows.

1. The upstream tarball is downloaded as the package-version.tar.xz file.
2. DTOT apxuB pacnakoBbIBaeTCH, CO30AETCA MHOXECTBO (halisioB B Katasiore nakem-sepcusil.
3. The upstream tarball is copied (or symlinked) to the particular filename packagename_version.orig.tar.xz.

e CMMBO/, pasaensoLlLmii makem v Bepcuro, 3aMeHsieTcs ¢ - (gedmca) Ha _ (nog4yépkmnBaHune)
* K paclumpeHuio obaBnseTcs .orig.

4. K ucxogHomy Kogy OCHOBHOW BeTKM pa3paboTku B kaTtanor nakem-sepcusildebian/ no6aensiorcs
chaiinbl cneymdpmkauum naketa Debian.

37

[7IABA 6. BASICS FOR PACKAGING 6.1. PABOTA IO CO34AHUIO NMAKETA

» O6s3aTenbHble dalinbl cneyundumkaunm B katanore debian/*:

debian/rules VicnonHsemblin cueHapwuii ans c6opkn naketa Debian (cm. «Pasgen 6.5»)

debian/control The package configuration file containing the source package name, the
source build dependencies, the binary package name, the binary dependencies, etc. (see
«Paznen 6.6»)

debian/changelog ®alin c uctopuein naketa Debian, onpefensioLinii B nepBoii CTPoke Bep-
CUI0 NakeTa 13 OCHOBHOM BETKU pa3paboTku 1 Homep pefakumm Debian (cm. «Pasgen 6.7»)

debian/copyright ViHdopmaLmsa 06 aBTOpckux npaBax v nueH3un (cM. «Pasgen 6.8»)

debian/sourcel/format This indicates the desired format to dpkg-source(1) (see Debian wiki:
«DebSrc3.0»)

» HeobGsi3aTenbHble daiinbl cneyndmkaunm B katanore debian/* (see «Pazgen 6.14»):
» These files must be manually edited to their perfection according to the «Debian Policy Manual»
and «Debian Developer’s Reference».

5. The dpkg-buildpackage command (usually from its wrapper debuild or sbuild) is invoked in
the package-versionl directory to make the Debian source and binary packages by invoking the
debianl/rules script.

* The current directory is set as: «CURDIR=/path/to/package-version/»

» Create the Debian source package in the Debian source format «3.0 (quilt)» using dpkg-
source(l)

— package_version.orig.tar.xz (copy or symlink of package-version.tar.xz)
- package_version-revision.debian.tar.xz (tarball of debian/ found in package-versionl)
— package_version-revision.dsc

» Build the source using «debian/rules build» into $(DESTDIR)

- «DESTDIR=debianl/binarypackagel» for single binary package 1
— «DESTDIR=debian/tmp/» for multi binary package

» Co3sgaHue asounyHoro naketa Debian c nomowbio dpkg-deb(1), dpkg-genbuildinfo(1) n dpkg-
genchanges(1).
— 0BOUYHbIlNakem_gepcusi-pedakyusi_apxumexkmypa.deb
— ... (There may be multiple Debian binary package files.)
— nakem_gepcusi-pedakyusi_apxumexkmypa.changes
— package_version-revision_arch.buildinfo

6. Mposepka kavecTBa naketa Debian ¢ nomoLbio komaHabl lintian. (pekomeHayeTtcs)

* Follow the rejection guidelines from ftp-master.

- «REJECT-FAQ»
— «Jlnct npoBepok Ana naketos n3 NEW»
— «ABTOMAaTMYeCKMe OTK/TIOHEHMA NakeToB Lintian» («cnvcok Teros. lintian)

7. Test the goodness of the generated Debian binary package manually by installing it and running
its programs.

8. After confirming the goodness, prepare files for the normal source-only upload to the Debian
archive.

9. Sign the Debian package file with the debsign command using your private GPG key.

» Use «debsign package_version-revision_source.changes» (source-only upload situation)
» Use «debsign package version-revision_arch.changes» (source+binary upload situation)

10. Upload the set of the Debian package files with the dput command to the Debian archive.

» Use «dput package_version-revision_source.changes» (source-only upload)

1This is the default up to debhelper v13. At debhelper v14, it warns the default change. After debhelper v15, it will change
the default to DESTDIR=debian/tmp/ .

38

https://wiki.debian.org/Projects/DebSrc3.0
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/manuals/developers-reference/
https://ftp-master.debian.org/
https://ftp-master.debian.org/REJECT-FAQ.html
https://ftp-master.debian.org/NEW-checklist.html
https://ftp-master.debian.org/#lintianrejects
https://ftp-master.debian.org/static/lintian.tags

[7IABA 6. BASICS FOR PACKAGING 6.2. DEBHELPER PACKAGE

» Use «dput package_version-revision_arch.changes» (source+binary upload)

Test building and confirming of the binary package goodness as above is the moral obligation as
a diligent Debian developer but there is no physical barrier for people to skip such operations at this
moment for the source-only upload.

For the upstream tarball, the debmake command helps up to the step 4 in the above workflow. For the
upstream working tree package/ checked out, e.g., by «git clone https://github.com/upstreamname/package.git»
without any upstream tarball, the debmake command invoked in it helps up to step 4, too. The debmake
command does not overwrite any existing configuration files.

Tenepb 3aMeHNTe Kaxayto YacTb UMeHU haina.

* yacTb nakem Ha nms naketa Debian ¢ ncxogHbIM KogoOM

* YyacTb 0BOUYHbIliNakem Ha UMsi ABONYHOro naketa Debian

* YyacTb BEpPCUsi Ha BEPCUIO OCHOBHOW BETKM pa3paboTku

* YyacTb pedakyusi Ha Homep pegaumn Debian

« the arch part with the package architecture (e.g., amd64)

The current Debian practice for uploading the normal Debian package is:

« Use the source-only upload if all generated binary packages exist in the Debian sid archive. This
is usual case.

e Use the source+binary upload if any one of generated packages is missing in the Debian sid
archive. (This involves manually handled NEW process by the archive management team.)

See also «Source-only uploads».

lNoackaska

[@ Micnonb3eTca MHOXECTBO pas/inyHbIX CTpaTerl/Iﬁ no ynpabBneHno sannaramu n
MCMOJ/Ib30BaHNKO CUCTEM YyNnpaB/1ieHNA BEPCUAMN. Bawm He cnegyet ncnosib3oBatb
BCE U3 HUX.

Moackaska

There is very extensive documentation in «Chapter 6. Best Packaging Practices»
in the «Debian Developer’s Reference». Please read it.

6.2 debhelper package

Although a Debian package can be made by writing a debianlrules script without using the debhelper
package, it is impractical to do so. There are too many modern «Debian Policy» required features to be
addressed, such as application of the proper file permissions, use of the proper architecture dependent
library installation path, insertion of the installation hook scripts, generation of the debug symbol package,
generation of package dependency information, generation of the package information files, application
of the proper timestamp for reproducible build, etc.

Debhelper package provides a set of useful scripts in order to simplify Debian’s packaging workflow
and reduce the burden of package maintainers. When properly used, they will help packagers handle
and implement «Debian Policy» required features automatically.

Mpoueaypa co3gaHns naketa Debian B coBpeMeHHOM CTW/Ie MOXET ObITb OpraHn3oBaHa B BUE Ha-
6opa NPOCTbIX MOAY/bHbIX AEACTBUIA:

39

https://github.com/
https://wiki.debian.org/SourceOnlyUpload
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/

[7IABA 6. BASICS FOR PACKAGING 6.3. VIMATIAKETA VI BEPCUIA

¢ using the dh command to invoke many utility scripts automatically from the debhelper package,
and

* HACTpOiiKa UX NOBEAEHMUS C MOMOLLbIO AeKnapaTvBHbIX (daiiioB HacTpoiiku B katanore debian/.

You should almost always use debhelper as your package’s build dependency. This document also
assumes that you are using a fairly contemporary version of debhelper to handle packaging works in
the following contents.

3ameyaHune

For debhelper «compat >= 9», the dh command exports compiler flags

(CFLAGS, CXXFLAGS, FFLAGS, CPPFLAGS and LDFLAGS) with values as
returned by dpkg-buildflags if they are not set previously. (The dh command
calls set_buildflags defined in the Debian::Debhelper::Dh_Lib module.)

3ameyaHune

debhelper(l) changes its behavior with time. Please make sure to read
debhelper-compat-upgrade-checklist(7) to understand the situation.

6.3 Wms nakeTta n Bepcud

If the upstream source comes as hello-0.9.12.tar.xz, you can take hello as the upstream source package
name and 0.9.12 as the upstream version.

There are some limitations for what characters may be used as a part of the Debian package. The
most notable limitation is the prohibition of uppercase letters in the package name. Here is a summary
as a set of regular expressions:

e Upstream package name (-p): [-+.a-z0-9]{2, }

¢ Binary package name (-b): [-+.a-z0-9]{2, }

e Upstream version (-u): [0-9][-+.:~a-z0-9A-Z]*
¢ Debian revision (-r): [0-9][+.~a-z0-9A-Z]*

See the exact definition in «Chapter 5 - Control files and their fields» in the «Debian Policy Manual».

Bam cnegyeT COOTBETCTBYHOLWMM 06pa3oM N3MEHUTbL UMS NaKeTa U BEPCUI0 OCHOBHO BETKMN pa3pa-
60TKM ons co3gaHnsa naketa Debian.

[ns Toro, uTo6bl MHOPMaLNUs 06 MMEHN NakeTa N Homepe Bepcumn ahhekTMBHO 06pabaTbiBa/INCh
TakMMu NOnynsPHbLIMU MHCTPYMEHTaMU Kak KoMaHga aptitude, pekomeHayeTcs, 4TO6bl AMHA UMEHM
nakeTa 6bl1a paBHa 30 cumBoiaM WM 6bi1a MeHbLUE; a 06LLas A/MHa BepCcumn 1 pegakumm bbiia pasHa
14 cnmBonam wan MeHblue. 2

[nsi Toro, 4To6bl HE BO3HMKaIM KOHGW/IMKTBI, BUAMMOE NMOoJ1b30BaTeN0 NMS ABOMYHOIO NakeTa He crie-
AyeT BblbypaTb 13 Ynicna pacnpocTpaHEHHbIX C/10B.

If upstream does not use a normal versioning scheme such as 2.30.32 but uses some kind of date
such as 11Apr29, a random codename string, or a VCS hash value as part of the version, make sure to
remove them from the upstream version. Such information can be recorded in the debian/changelog
file. If you need to invent a version string, use the YYYYMMDD format such as 20110429 as upstream
version. This ensures that the dpkg command interprets later versions correctly as upgrades. If you need
to ensure a smooth transition to a normal version scheme such as 0.1 in the future, use the 0~YYMMDD
format such as 0~110429 as upstream version, instead.

CTpoKuM BepCuit MOXHO CpaBHMBAaTb APYr C APYroM ¢ MoMoLLbio koMaHAdbl dpkg criegytowm o6pasom.

2ns 6onee yem 90% NakeToB AIMHA MMEHM MakeTa pasHa 24 CMMBOJ1aM U MEHbLUE 3TOr0 YMCNa; 4IMHA BEPCUN OCHOBHOW
BETKM paBHa 10 cuMBOiam UAn MeHbLUe, a A/IMHa HoMmepa pegakumn Debian paBHa 3 cumBonam nnm MeHbLUe.

40

https://www.debian.org/doc/debian-policy/#document-ch-controlfields

[7TABA 6. BASICS FOR PACKAGING 6.4. POHOW MAKET DEBIAN

[~] $ dpkg --compare-versions verl op ver2

MpaBnno cpaBHEHN BEPCUI MOXET ObITb NPeACTaB/EeHb! CNeayoWmMM 06pa3om:
* CTpOKM CpaBHMBAIOTCA B NOPsSAKE C Havyasia [0 KoHua.

* BykBbl 60nbLUe Yncen.

* Yucna cpaBHUBAIOTCA KakK Liefble yucna.

* BykBbl CpaBHMBAalOTCA B nopsake t1abnuubl kogos ASCII.

Takxke nMeloTca crneunasbHble npasuna ansa CMMBOJIOB TOUKK (), natoca (+) U Tunbabl (~). OHM no-
KasaHbl H1Xe.

0.0 < 0.5<0.10 < 0.99 <1 <1.0~rcl < 1.0 < 1.0+b1 < 1.0+nmul < 1.1 < 2.0

One tricky case occurs when the upstream releases hello-0.9.12-ReleaseCandidate-99.tar.xz as
the pre-release of hello-0.9.12.tar.xz. You can ensure the Debian package upgrade to work properly by
renaming the upstream source to hello-0.9.12~rc99.tar.xz.

6.4 PopHow naket Debian

The non-native Debian package in the Debian source format «3.0 (quilt)» is the most normal Debian
source package format. The debian/sourcelformat file should have «3.0 (quilt)» in it as described in
dpkg-source(1). The above workflow and the following packaging examples always use this format.

A native Debian package is the rare Debian binary package format. It may be used only when the
package is useful and valuable only for Debian. Thus, its use is generally discouraged.

MpepoctepexeHne

is not accessible from the dpkg-buildpackage command with its correct name
package_version.orig.tar.xz . This is a typical newbie mistake caused by making
a symlink name with «-» instead of the correct one with «_».

: A native Debian package is often accidentally built when its upstream tarball

A native Debian package has no separation between the upstream code and the Debian changes
and consists only of the following:

e package_version.tar.xz (copy or symlink of package-version.tar.xz with debian/* files.)
e package_version.dsc

If you need to create a native Debian package, create it in the Debian source format «3.0 (native)»
using dpkg-source(1).

lNoackaska
There is no need to create the tarball in advance if the native Debian package
format is used. The debian/source/format file should have «3.0 (native)» in it
as described in dpkg-source(1) and The debian/sourcelformat file should have
the version without the Debian revision (1.0 instead of 1.0-1). Then, the tarball
containing is generated when «dpkg-source -b» is invoked in the source tree.

41

[7IABA 6. BASICS FOR PACKAGING 6.5. DEBIAN/RULES FILE

6.5 debian/rules file

The debian/rules file is the executable script which re-targets the upstream build system to install files
in the $(DESTDIR) and creates the archive file of the generated files as the deb file. The deb file is used
for the binary distribution and installed to the system using the dpkg command.

The Debian policy compliant debian/rules file supporting all the required targets can be written as
simple as 3:

MpocToii haiin debian/rules:

#!/usr/bin/make -f
#export DH_VERBOSE = 1

% :
dh $@

The dh command functions as the sequencer to call all required «dh target» commands at the right
moment. 4

« dh clean : BblunLEeT halinbl B fepeBe UCXOAHOT0 Koaa.

< dh build : c6opka gepea ncxogHoro koga

¢ dh build-arch : c6opka 3aBUCALLMX OT apXUTEKTYPbI NAaKeTOB U3 AepeBa NCXOQHOTo Koaa

¢ dh build-indep : c6opka He3aBUCALLMX OT apXMTEKTYPbI NAKETOB M3 AepeBa UCXOAHOro Koaa
« dh install : yctaHoBKa gBounYHbIX thaiinos B $(DESTDIR)

« dh install-arch : yctaHoBka gBouuHbIx thaiinos B $(DESTDIR) 411 3aBUCALLMX OT apXMTEKTYpbl
nakeToB

 dhinstall-indep : yctaHoBKa gBOMNYHbIX (haiinos B $(DESTDIR) 415 HE3aBUCALLMX OT apXMTEKTYpPbI
NakeToB

e dh binary : co3gaHne daiina deb

e dh binary-arch : cozgaHue haiina deb gns 3aBMCALLMX OT apXUTEKTYPbI NAaKETOB

e dh binary-indep : cozgaHve dhaiina deb ans HezaBMCALLMX OT apXUTEKTYPbI NAKETOB
Here, $(DESTDIR) path depends on the build type.

« «<DESTDIR=debianlbinarypackagel» for single binary package °

* «DESTDIR=debian/tmp/» for multi binary package

See «Pa3pgen 10.2» and «Pa3sgen 10.3» for customization.

Moackaska

Setting «export DH_VERBOSE = 1» outputs every command that modifies files
on the build system. Also it enables verbose build logs for some build systems.

3KomaHga debmake co3gaét Heckonbko 60nee crioxHbIv dalin debian/rules. Tem He meHee, 3T0 6a30Bast YacCTb.

4This simplicity is available since version 7 of the debhelper package. This guide assumes the use of debhelper version 13
or newer.

5This is the default up to debhelper v13. At debhelper v14, it warns the default change. After debhelper v15, it will change
the default to DESTDIR=debian/tmp/ .

42

[7IABA 6. BASICS FOR PACKAGING 6.6. DEBIAN/CONTROL FILE

6.6 debian/control file

The debian/control file consists of blocks of metadata separated by blank lines. Each block of metadata
defines the following, in this order:

e MeTafaHHbIX naketa Debian ¢ ncxogHbIM KOAOM

e MeTajaHHble ABOMNYHbIX NakeToB Debian

See «Chapter 5 - Control files and their fields» of the "Debian Policy Manual” for the definition of each
metadata field.

3ameyaHue

The debmake command sets the debian/control file with «Build-Depends:

debhelper-compat (= 13)» to set the debhelper compatibility level.

lNoackaska

If an existing package has a debhelper compatibility level lower than 13, it's

probably time to update its packaging.

6.7

debian/changelog file

The debian/changelog file records the Debian package history.

Edit this file using the debchange command (alias dch).
The first line defines the upstream package version and the Debian revision.
Document changes in a specific, formal, and concise style.

- If Debian maintainer modification fixes reported bugs, add «Closes: #<bug number>» to
close those bugs.

Even if you're uploading your package yourself, you must document all non-trivial user-visible
changes, such as:

— Security-related bug fixes.
- User interface changes.

If you're asking a sponsor to upload it, document changes more comprehensively, including all
packaging-related ones, to help with package review.

— The sponsor shouldn’t have to guess your reasoning behind package changes.
- Remember that the sponsor’s time is valuable.

After finishing your packaging and verifying its quality, execute the "dch -r" command and save
the finalized debian/changelog file with the suite normally set to unstable. ¢ If you're packaging for
backports, security updates, LTS, etc., use the appropriate distribution names instead.

The debmake command creates the initial template file with the upstream package version and the
Debian revision. The distribution is set to UNRELEASED to prevent accidental uploads to the Debian
archive.

sIf you're using the vim editor, make sure to save this with the ":wq” command.

43

https://www.debian.org/doc/debian-policy/ch-controlfields.html

[7IABA 6. BASICS FOR PACKAGING 6.8. DEBIAN/COPYRIGHT FILE

Moackaska

The date string used in the debian/changelog file can be manually generated
by the «LC_ALL=C date -R» command.

lNoackaska

Use a debian/changelog entry with a version string like 1.0.1-1~rc1 when
experimenting. Later, consolidate such changelog entries into a single entry for

the official package.

The debian/changelogfile is installed in the lusr/shareldoclbinarypackage directory as changelog.Debian.gz
by the dh_installchangelogs command.

>XypHan n3ameHeHuin OCHOBHOI BETKM yCTaHaBnvBaeTcs B katauior Jusrishare/doclosouyHsilinakem
nog nmeHem changelog.gz.

The upstream changelog is automatically found by the dh_installchangelogs using the case insensitive
match of its file name to changelog, changes, changelog.txt, changes.txt, history, history.txt, or
changelog.md and searched in the ./ doc/ or docsl/ directories.

6.8 debian/copyright file

Debian takes copyright and license matters very seriously. The "Debian Policy Manual” requires a summary
of these in the debian/copyright file of the package.

¢ «12.5. Copyright information»
¢ «2.3. Copyright considerations»
» «License information»

The debmake command creates the initial debian/copyright template file using the licensecheck(1)
command.

6.9 debian/patches/* files

As demonstrated in «Pa3gen 5.9», the debian/patches/ directory holds
« patch-file-name.patch files providing -p1 patches and
« the series file which defines how these patches are applied.
See how these files are used in:
» «Pasgen 14.6» to build the Debian source package

» «Paszgen 14.7» to extract source files from the Debian source package

3ameyaHue

Header texts of these patches should conform to «DEP-3».

44

https://www.debian.org/doc/debian-policy/ch-docs.html#s-copyrightfile
https://www.debian.org/doc/debian-policy/ch-archive.html#s-pkgcopyright
https://www.debian.org/legal/licenses/
https://dep-team.pages.debian.net/deps/dep3/

[7IABA 6. BASICS FOR PACKAGING 6.10. DEBIAN/SOURCE/INCLUDE-BINARIES ...

3ameyaHune

If you want to use VCS tools such as git, gbp and dgit to create and manage
these patches after learning basics here, please refer to later in «nasa 12».

6.10 debian/sourcelinclude-binaries file

The «dpkg-source --commit» command functions like dquilt but has one advantage over the dquilt
command. The dquilt command can’t handle modified binary files since they are not representable in a
diff. Also, adding binary files under the debian/ directory is normally rejected by dpkg-source. By listing
these binary files in debian/sourcelinclude-binaries, the maintainer can include these binary files to
the Debian source package generated by dpkg-source.

6.11 debian/watch file

3amevyaHue

This file is for use by the Debian non-native package.

The uscan(1l) command downloads the latest upstream version using the debian/watch file. E.g.:
Basic debian/watch file:

version=4
https://ftp.gnu.org/gnu/hello/ @PACKAGE@@ANY_VERSION@@ARCHIVE_ EXT@

The uscan command may verify the authenticity of the upstream tarball with optional configuration
(see «Pazgen 6.12»).
See uscan(l), «Pasgen 10.4», «Pazgen 9.1», and «Pa3gen 12.7» for more.

6.12 debian/upstream/signing-key.asc file

Some packages are signed by a GPG key and their authenticity can be verified using their public GPG
key.

For example, «<GNU hello» can be downloaded via HTTP from https://ftp.gnu.org/gnu/hello/ . There
are sets of files:

« hello-version.tar.xz (upstream source)
« hello-version.tar.xz.sig (detached signature)

Bbibepem camylo NOCNELHIO BEPCUIO.
Download the upstream tarball and its signature.

[base_dir] $ wget https://ftp.gnu.org/gnu/hello/hello-2.9.tar.xz
[base_dir] $ wget https://ftp.gnu.org/gnu/hello/hello-2.9.tar.xz.sig
[base_dir] $ gpg --verify hello-2.9.tar.xz.sig

gpg: Signature made Thu 10 Oct 2013 08:49:23 AM JST using DSA key ID 8OEE4AQ0
gpg: Can't check signature: public key not found

45

https://www.gnu.org/software/hello/
https://ftp.gnu.org/gnu/hello/

[7IABA 6. BASICS FOR PACKAGING 6.13. DEBIAN/SALSA-CI.YML FILE

If you know the public GPG key of the upstream maintainer from the mailing list, use it as the
debian/upstream/signing-key.asc file. Otherwise, use the hkp keyserver and check it via your web
of trust.

Download public GPG key for the upstream

[base_dir] $ gpg --keyserver hkp://keys.gnupg.net --recv-key 8QEE4A00

gpg: requesting key 8OEE4A00 from hkp server keys.gnupg.net

gpg: key 8OEE4A00: public key "Reuben Thomas <rrt@sc3d.org>" imported

gpg: no ultimately trusted keys found

gpg: Total number processed: 1

apg: imported: 1

[base_dir] $ gpg --verify hello-2.9.tar.xz.sig

gpg: Signature made Thu 10 Oct 2013 08:49:23 AM JST using DSA key ID 8OEE4AQ0
gpg: Good signature from "Reuben Thomas <rrt@sc3d.org>"

Primary key fingerprint: 9297 8852 A62F AS5E2 85B2 A174 6808 9F73 80EE 4A00

Moackaska
If your network environment blocks access to the HKP port 11371, use
«hkp:llkeyserver.ubuntu.com:80» instead.

After confirming the key ID 80EE4AO00 is a trustworthy one, download its public key into the debian/upstream/signi
key.asc file.
Set public GPG key to debian/upstream/signing-key.asc

[base_dir] $ gpg --armor --export 80EE4A00 >debian/upstream/signing-key.asc

With the above debian/upstream/signing-key.asc file and the following debian/watch file, the uscan
command can verify the authenticity of the upstream tarball after its download. E.qg.:
Improved debian/watch file with GPG support:

version=4
opts="pgpsigurlmangle=s/$/.sig/" \
https://ftp.gnu.org/gnu/hello/ @PACKAGE@@ANY_VERSION@@ARCHIVE_ EXT@

6.13 debian/salsa-ci.yml file

Install Salsa CI configuration file. See «Pa3gen 12.3».

6.14 Other debian/* files

B katanor debian/ moxHo [06aBUTbL AONOMHUTE/bHbIE (haiibl HACTPONKN. BOABLUIMHCTBO U3 HUX UC-
nonb3yloTca A8 ynpaeneHus komaHgamu dh_*, npepoctasnsembiMn naketom debhelper, Ho Takke

nUmerTcsa gonosHuTenbHble dhainbl gna komaHg dpkg-source, lintian n gbp.

Moackaska

Even an upstream source without its build system can be packaged just by using
these files. See «Pa3gen 15.2» as an example.

The alphabetical list of notable optional debiani/binarypackage.* configuration files listed below provides
very powerful means to set the installation path of files. Please note:

46

https://en.wikipedia.org/wiki/Web_of_trust
https://en.wikipedia.org/wiki/Web_of_trust
https://salsa.debian.org/salsa-ci-team/pipeline

[7IABA 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

¢ The «-x[01234]» superscript notation that appears in the following list indicates the minimum value
for the debmake -x option that generates the associated template file. See «Pasgen 17.4» or
debmake(1) for details.

« For a single binary package, the «binarypackage.» part of the filename in the list may be removed.

For a multi binary package, a configuration file missing the «binarypackage» part of the filename
is applied to the first binary package listed in the debian/control.

« When there are many binary packages, their configurations can be specified independently by
prefixing their name to their configuration filenames such as «package-1.install», «xpackage-2.install»,
etc.

* HekoTopeble Wwab/oHHbIe (haiinibl HACTPOEK MOTYT He GbITb co3gaHbl komaHaol debmake. B Taknx
Cnyyasix Bam crefyeT co3farb UX C NOMOLLbIO pefjakTopa.

* Some configuration template files generated by the debmake command with an extra .ex suffix
need to be activated by removing that suffix.

The debmake -B command adds template files with an extra .ex suffix for all existing template files
without .ex and they need to be activated by removing that suffix.

« Heucnonb3yemble WabnoHHbIe dhaifibl HACTPOEK, co3aaHHble komaHaol debmake, cneayet yaa-
NNTb.

» KonupyiiTe Wwa6noHHble haiisibl HACTPOeK No Heob6XxoAMMOCTM B dhaiifibl C COOTBETCTBYIOLMMM
VMEHAMU JBOVYHBIX NAKETOB.

binarypackage.bug-control *? yctaHasnusaetcs kak usrishare/bugldsouursitinakemlcontrol B
odsouyHbitinakem. CMm. «Pazgen 10.11».

binarypackage.bug-presubj *? yctanasnvsaetcs kak usrishare/bugldgouursitinakemlpresubj
B binarypackage. Cm. «Pa3gen 10.11».

binarypackage.bug-script *? yctaHaBnuBaetcs kak usr/sharelbuglosouyHbiiinakem nnv usrishare/bugl/oso
B 0BOUYHbIlNakem. CMm. «Pazgen 10.11».

osoud4Hbitinakem.bash-completion List bash completion scripts to be installed.
The bash-completion package is required for both build and user environments.
Cwm. dh_bash-completion(1).

clean ! List files that should be removed but are not cleaned by the dh_auto_clean command.
Cwm. dh_auto_clean(1) n dh_clean(1).

compat ** Set the debhelper compatibility level. (deprecated)
Use «Build-Depends: debhelper-compat (= 13)» in debian/control to specify the compatibility
level and remove debian/compat.
See «COMPATIBILITY LEVELS» in debhelper(7).

binarypackage.conffiles *® This optional file is installed into the DEBIAN directory within the
binary package while supplementing it with all the conffiles auto-detected by debhelper.
This file is primarily useful for using "special” entries such as the remove-on-upgrade feature
from dpkg(1).
If the program you're packaging requires every user to modify the configuration files in the
letc directory, there are two popular ways to arrange for them not to be conffiles, keeping the
dpkg command happy and quiet.

- Co3spaiiTe CMMBO/bHYIO CCbI/IKY B KaTasiore letc, ykasbiBatoLLyto Ha ¢paiin B katasiore Ivar,
co3faBaemblii CLieHapysiMi COMPOBOX/AAIOLLETO.
- Co3spgaiiTe (haiin c NoMoLLbio CLEHAPUEB COMPOBOXAAIOLLETO B KaTasiore /etc.

Cwm. dh_installdeb(1).

osouyHbitinakem.config 370 config-cueHapuii debconf, ncnonsb3lyemsiii gns Toro, YTO6LI 3a-
[JaBaTb nonb3oBartesnto Nbble HeobXxoaMMble A1 HAaCTPOWKM nakeTa Bonpockl. Cm. «Pas-
aen 11.22».

47

[7IABA 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

dsouyHsiiinakem.cron.hourly *® YcraHasnusaetcsa B (paiin etclcron/hourlylosouyHbiiinakem
B 080UYHbIlnakem.

Cwm. dh_installcron(1) n cron(8).

dsouyHbliinakem.cron.daily *® YctaHasnusaertcs B dpaiin etc/cron/daily/osouyHbitinakem B 080-
uyHblIlnakem.
Cwm. dh_installcron(1) n cron(8).

dsouuHbiiinakem.cron.weekly *3 YctaHasnusaetcs B paiin etclcronlweeklyldsouyHbiiinakem
B 08OUYHbIlNnakem.
Cwm. dh_installcron(1) n cron(8).

dsouyHbliinakem.cron.monthly >3 [nstalled into the *etc/cron/monthly/*binarypackage file in binarypackage.
Cwm. dh_installcron(1) n cron(8).

dsouyHbliinakem.cron.d >3 YctaHasnueaetcs B doaiin etc/cron.d/dsouyHbitinakem B 080UYHbIT-
nakem.
Cwm. dh_installcron(1), cron(8) u crontab(5).

dsouynbiiinakem.default *3 Ecnu Takoii cpaiin cyliecTsyerT, To OH ycTaHaBnmBaetcs B etcldefault/dgouyHbidin
B 0BOUYHbIlNnakem.
Cwm. dh_installinit(1).

binarypackage.dirs *1 CogepXuT CrnMcok Katasioros, KOTopble Jo/MKHbI 6bITh CO3AaHbl B 080UY-
Hbilinakem.
Cwm. dh_installdirs(1).

JT0 370 He TpebyeTcs, nockonbky Bce komaHabl dh_install* asTomaTtnueckn cosnatot Heob-
Xogumble katasioru. icnonb3yiite aToT dhaiin ToNbKo B TOM Cflyyae, ec/im y Bac BO3HMKAIOT
Kakne-nnobo 3aTpyaHeHus.

binarypackage.doc-base *! YcraHasnvBaeTcs Kak ynpasnsowmii paiin doc-base B 080uyHbIU-
nakem.
See dh_installdocs(1) and «Debian doc-base Manual (doc-base.html)» provided by the
doc-base package.
binarypackage.docs ! Co3aepxuT cnmcok aiifios 4oKyMeHTaLuum A1 UX yCTaHOBKY B ABOUY-
Hbilnakem.
Cwm. dh_installdocs(1).
binarypackage.emacsen-compat YctaHasnumaetcs B ust/lib/lemacsen-common/packages/compat/dsouy
B binarypackage.
Cwm. dh_installemacsen(1).
dsouuHbiiinakem.emacsen-install *® Ycranasnusaertcs B usr/liblemacsen-commonl/packageslinstall/dso
B 0BOUYHbIlNakem.
Cwm. dh_installemacsen(1).
dsouyHbIlinakem.emacsen-remove *® Ycranasnusaertcs B usr/liblemacsen-common/packages/removelc
B 080UYHbIlnakem.
Cwm. dh_installemacsen(1).
dsouyHbllinakem.emacsen-startup *® YcraHasnmsaetca B usr/liblemacsen-common/packages/startup/o:
B 080OUYHbIlNnakem.
Cwm. dh_installemacsen(1).
binarypackage.examples X1 Cogepxut cnvucok aiifioB Wan Katasioros ¢ npumepamu ans umx
yctaHoBku B ustIshare/doclosouyHsilinakemlexamples/ B dsouyHbilinakem.
Cwm. dh_installexamples(1).
gbp.conf X! Ecnv 310T haiin CyLecTByeT, To OH UCMOJb3YeTCA Kak ddaiin HacTPoik1 A1s KoMaH-
bl gbp.
Cwm. gbp.conf(5), gbp(1) u git-buildpackage(1).
binarypackage.info X1 CogepxuT cnucok info-haiinos ans nx ycTaHoBKW B OBOUYHbIINaKem.
Cwm. dh_installinfo(1).
binarypackage.init ** Installed into etclinit.d/binarypackage in binarypackage. (deprecated)
Cwm. dh_installinit(1).

48

file:///usr/share/doc/doc-base/doc-base.html/index.html

[7IABA 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

binarypackage.install ** CopfepXuT cnmcok gaiifios, KOTopble AO/MKHbI BbITb YCTAHOB/IEHbI, HO
He ycTaHaBnmBaroTca komaHgon dh_auto_install.

Cwm. dh_install(1) n dh_auto_install(1).
binarypackage.links ** List pairs of source and destination files to be symlinked. Each pair should
be put on its own line, with the source and destination separated by whitespace.
Cwm. dh_link(1).
binarypackage.lintian-overrides *? YcraHaenmsaetcs B usr/sharellintian/overrides/osouyHbitinakem

B KaTasiore c60pku naketa. 1ot haiin ncnonb3yeTtcs Ans 6/10KMPOBKN OLLMOOYHBIX AnarHo-
cTnyeckmnx npoueayp lintian.

Cwm. dh_lintian(1), lintian(1) n «PykoBoacTBO nonb3oBarens Lintian».
binarypackage.maintscript *2 If this optional file exists, debhelper uses this as the template to

generate DEBIANIbinarypackage.{pre,postHinst,rm} files within the binary package while
adding «-- "$@”» to the dpkg-maintscript-helper(1) command.
See dh_installdeb(1) and «Chapter 6 - Package maintainer scripts and installation procedure»
in the «Debian Policy Manual».
manpage.* *2 KomaHaa debmake co3gaét wabnoHHble aiibl cTpaHuL, pykoBoacTea. MNepenme-
HyliTe 3TU (oalisibl COOTBETCTBYHOLLMM 06pa3oM 1 06HOBUTE UX COAEPXKUMOE.
Debian Policy requires that each program, utility, and function should have an associated
manual page included in the same package. Manual pages are written in nroff(1). If you are
new to making a manpage, use manpage.asciidoc * or manpage.1 > as the starting point.
binarypackage.manpages *! CoaepXuT ClUCOK CTPaHWL, PyKOBOACTBA [/151 X YCTAHOBKM.
Cwm. dh_installman(1).
osou4HbIlinakem.menu (yctapen, 6onee He yctaHaBnuBaetcs) tech-ctte #741573 decided «Debian
should use .desktop files as appropriate».

®dalin meHio Debian yctaHaBnuBaetcs B usrishare/menuldsouyHbilinakem B 0B80UYHbIGNA-
Kem.

WHgpopmauuio o chbopmate cMm. B menufile(5). Cm. dh_installmenu(l).

NEWS YctaHasnumBaeTcs B ustrlshareldoclosouyHbilinakemINEWS.Debian.
Cwm. dh_installchangelogs(1).
patches/* Hab6op chainnos 3annar -pl, KOTopble NPUMEHSOTCSA K UICXOAHOMY KOAEe OCHOBHO BETKM
[0 3anycka npouecca c60pkn UCXOAHOIO Koaa.
KomaHga debmake He co3gaéT dhaiinel 3annar.
Cwm. dpkg-source(1l), «Pasgen 4.4» n «Pasgen 5.9».

patches/series *! lMocnenoBatenbHOCTL NPUMEHEHVs haiinos 3annar patches/*.

binarypackage.preinst >3, binarypackage.postinst *3, binarypackage.prerm 3, binarypackage.postrm -
If these optional files exist, the corresponding files are installed into the DEBIAN directory
within the binary package after enriched by debhelper. Otherwise, these files in the DEBIAN
directory within the binary package is generated by debhelper.
Whenever possible, simpler binarypackage.maintscript should be used instead.
See dh_installdeb(1) and «Chapter 6 - Package maintainer scripts and installation procedure»
in the «Debian Policy Manual».
See also debconf-devel(7) and «3.9.1 Prompting in maintainer scripts» in the «Debian Policy
Manual».

README.Debian ! YcTaHaBnMBaeTCs B NePBbIii ABOUYHBIN NAKET, ykasaHHbIii B daiine debian/control
kak usrishareldocl/osouyHbilinakem/README.Debian.
JTOT haiin cogepxnT cneunasnbHyo nHhopmaumio o nakete Debian.
Cwm. dh_installdocs(1).

README.source ! Installed into the first binary package listed in the debian/control file as
usr/shareldoclbinarypackagelREADME.source.

If running «dpkg-source -x» on a source package doesn’'t produce the source of the package,
ready for editing, and allow one to make changes and run dpkg-buildpackage to produce a
modified package without taking any additional steps, creating this file is recommended.

See «Debian policy manual section 4.14».

49

https://lintian.debian.org/manual/index.html
https://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
https://bugs.debian.org/741573
https://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
https://www.debian.org/doc/debian-policy/ch-binary.html#prompting-in-maintainer-scripts
https://www.debian.org/doc/debian-policy/ch-source.html#source-package-handling-debian-readme-source

[7IABA 6. BASICS FOR PACKAGING 6.14. OTHER DEBIAN/* FILES

dsouyHbliiinakem.service 3 Ecnv 3ToT haiif CyLLIECTBYET, TO OH ycTaHasnnBaeTcs B lib/systemd/system/ds
B binarypackage.

Cwm. dh_systemd_enable(1), dh_systemd_start(1) u dh_installinit(1).
sourcelformat ** dopmar naketa Debian.
- Use «3.0 (quilt)» to make this non-native package (popular)
- Use «3.0 (native)» to make this native package
See «<SOURCE PACKAGE FORMATS» in dpkg-source(1).

sourcellintian-overrides 2 This file is not installed, but is scanned by the lintian command to
provide overrides for the source package.

Cwm. dh_lintian(1) u lintian(1).
sourcellocal-options and sourcellocal-patch-header *4

3ameyaHune

These files are not compatible with the dgit workflow. See «Pas-
pen12.14»,

There is no reason to use these with the current version of dpkg-source(1).

sourceloptions *? The dpkg-source command uses this content as its options. This is typically
used with «Pasnen 12.13» and options may be:
- auto-commit
- single-debian-patch
This is included in the generated source package.
See «FILE FORMATS» in dpkg-source(1).
sourcelpatch-header *2 Co6oHas TekcToBasi popma, pasMeLiaemasi B BepxHeli YacTu aBTo-
MaTUYeCKM Co34aHHOol 3annartbl.

This is included in the generated source package and is meant to be committed to the "Pas-
fen 12.13.".

See «FILE FORMATS» in dpkg-source(1).

binarypackage.symbols ! ®aiinbi cumBonoB. Ecnn aTn dhaiisibl CyLWecTBYIOT, TO OHW 6yayT ne-
pefaHbl Ansi 06paboTkn u ycTaHoBKM KomaHae dpkg-gensymbols.
Cwm. dh_makeshlibs(1) n «Pasgen 11.16x»..

binarypackage.templates 3710 dhaiin wadénoHoB ansa debconf. OH ncnonb3yetca A BbiBOAA
BOMPOCOB, HEOOXOAMMbIX A1 HACTPOIiKM nakeTa. Cm. «Pasgen 11.22».

tests/control X! This is the RFC822-style test meta data file defined in DEP-8. See autopkgtest(1)
and «Pa3gen 11.4».

TODO YcTaHaB/MBaeTCA B NepPBbIii ABOUYHbIA NaKeT, ykasaHHbI B thaiine debian/control kak
usri/shareldoclosouyHnbilinakemITODO.Debian.
Cwm. dh_installdocs(1).

dsouyHbiiinakem.tmpfile *3 Ecnu aToT thaiin cyuiecTsyerT, To oH ycTaHaBnmsaetcs B usrllib/tmpfiles.d/dsouy
B 08OUYHbIlNnakem.
Cwm. dh_systemd_enable(1), dh_systemd_start(1) u dh_installinit(1).

binarypackage.upstart ** If this exists, it is installed into etclinit/package.conf in the package
build directory. (deprecated)
Cwm. dh_installinit(1).

upstream/metadata ** Per-package machine-readable metadata about upstream (DEP-12). See
«Upstream MEtadata GAthered with YAmMI (UMEGAYA)».

50

https://dep-team.pages.debian.net/deps/dep8/
https://dep-team.pages.debian.net/deps/dep12/
https://wiki.debian.org/UpstreamMetadata

naBa 7

Quality of packaging

The quality of Debian packaging can be improved by using testing tools.
¢ lintian(1)
¢ piuparts(1)
« autopkgtest(1)

If you follow «I"naBa 4», these are automatically executed. You are expected to fix all warnings.

7.1 Reformat debian/* files with wrap-and-sort

Itis a good idea to reformat debian/* files consistently using the wrap-and-sort(1) command in devscripts
package.
Reformat debian/* files

[debhello-0.0] $ wrap-and-sort -vast

7.2 Validate debian/* files with debputy

The new debputy tool 1 includes subcommands to validate (and fix) most files in debian/*.
Check correctness of files in debian/*

[debhello-0.0] $ debputy lint --spellcheck

Format debian/control and debian/tests/control files
[debhello-0.0] $ debputy reformat --style black
Using the «debputy reformat» command obsoletes using «wrap-and-sort -vast».

The debputy tool also includes a language server. You can set up to get real-time feedback while
editing debian/* files with any modern editor supporting the Language Server Protocol.

1The main purpose of the debputy tool is to offer a new Debian package build paradigm. This new paradigm is beyond the
scope of this tutorial.

51

https://manpages.debian.org/unstable/dh-debputy/debputy.1.en.html
https://en.wikipedia.org/wiki/Language_Server_Protocol

FnaBa 8

Check packaging with cme

It is a good idea to check dpkg configuration files using the cme(1) command in cme package. This is
used by the DFSG, Licensing & New Packages Team.
Check correctness using in cme

[debhello-0.0] $ cme fix --verbose dpkg

52

https://dfsg-new-queue.debian.org/

naBa 9

Sanitization of the source

There are a few cases that require sanitizing the source to prevent contamination of the generated Debian
source package.

¢ Non-https://www.debian.org/social_contract.html#guidelines|[DFSG] compliant content in the upstream
source.

— Debian takes software freedom seriously and adheres to the DFSG.
» Extraneous auto-generated content in the upstream source.

— Debian packages should rebuild these under the latest system.
» Extraneous VCS content in the upstream source.

- The -i and -l options set in «Pa3gen 4.5» for the dpkg-source(l) command should avoid
these.

* The -i option is intended for non-native Debian packages.
* The -l option is intended for native Debian packages.

There are several methods to avoid including undesirable content.

9.1 Fix with Files-Excluded

This method is suitable for avoiding non-https://www.debian.org/social_contract.html#guidelines[DFSG]
compliant content in the upstream source tarball.

e YKaxute cnncok dpaiinos ans yganexus B ctpoke Files-Excluded dhaiina debian/copyright.
* Ykaxute URL ans 3arpy3ku tar-apxvea 0CHOBHOW BeTKM B haiine debian/watch.
e 3anycTute KOMaHAy uscan /18 3arpy3ku HOBOro tar-apxuBa OCHOBHOI BETKMU.

- Alternatively, use the «gbp import-orig --uscan --pristine-tar» command.

* mk-origtargz invoked from uscan removes excluded files from the upstream tarball and repack it
as a clean tarball.

* MonyuuBLlumniics tar-apxve 6ygeT MMETb BEPCUIO C AOMOMHUTEbHBIM cyddhmkom +dfsg.

See «COPYRIGHT FILE EXAMPLES» in mk-origtargz(1).

53

https://www.debian.org/social_contract.html#guidelines

[7IABA 9. SANITIZATION OF THE SOURCE 9.2. FIX WITH «DEBIAN/RULES CLEAN>»

9.2 Fix with «debian/rules clean»

This method is suitable for avoiding auto-generated files by removing them in the "debian/rules clean”
target.

3ameyaHune

The “debian/rules clean” target is called before the "dpkg-source --build”
% command by the dpkg-buildpackage command. The "dpkg-source --build”

command ignores removed files.

9.3 Fix with extend-diff-ignore

This is for the non-native Debian package.
The problem of extraneous diffs can be fixed by ignoring changes made to specific parts of the source
tree. This is done by adding the "extend-diff-ignore=...” line in the debian/sourcel/options file.
debian/sourceloptions to exclude the config.sub, config.guess and Makefile files:

Don't store changes on autogenerated files
extend-diff-ignore = "(7|/)(config\.sub|config\.guess|Makefile)$"

3ameyaHune

% This approach always works, even when you can’t remove the file. It saves you
from having to make a backup of the unmodified file just to restore it before the
next build.

Moackaska

from the generated source package. This may be useful when local non-standard

If you use the debian/sourcellocal-options file instead, you can hide this setting
VCS files interfere with your packaging.

9.4 Fix with tar-ignore

This is for the native Debian package.
You can exclude certain files in the source tree from the generated tarball by adjusting the file glob.
Add the "tar-ignore=..." lines in the debian/sourceloptions or debian/source/local-options files.

3ameyaHue

For example, if the source package of a native package needs files with
the .0 extension as part of the test data, the setting in «Pa3gen 4.5» may
be too aggressive. You can work around this by dropping the -1 option for
DEBUILD_DPKG_BUILDPACKAGE_OPTS in «Pasgen 4.5» and adding the
"tar-ignore=..."” lines in the debian/sourcel/local-options file for each package.

54

[7IABA 9. SANITIZATION OF THE SOURCE 9.5. FIX WITH «GIT CLEAN -DFX>»

9.5 Fix with «git clean -dfx»

The problem of extraneous content in the second build can be avoided by restoring the source tree. This
is done by committing the source tree to the Git repository before the first build.
You can restore the source tree before the second package build. For example:

[debhello] $ git reset --hard
[debhello] $ git clean -dfx

This works because the dpkg-source command ignores the contents of typical VCS files in the source
tree, as specified by the DEBUILD_DPKG_BUILDPACKAGE_OPTS setting in «Pasaen 4.5».

MNoackaska

If the source tree is not managed by a VCS, run "git init; git add -A .; git commit”

before the first build.

55

FnaBa 10

More on packaging

Let's explore more fundamentals of Debian packaging.

10.1 Package customization

All customization data for the Debian source package resides in the debian/ directory as presented in
«Pa3gen 5.7»:

* The Debian package build system can be customized through the debian/rules file (see «Pa3s-
aen 10.2»).

* The Debian package installation path etc. can be customized through the addition of configuration
files such as package.install and package.docs in the debian/ directory for the dh_* commands
from the debhelper package (see «Pa3gen 6.14»).

When these are not sufficient to make a good Debian package, -pl patches of debian/patches/*
files are deployed to modify the upstream source. These are applied in the sequence defined in the
debian/patches/series file before building the package as presented in «Pa3gen 5.9».

You should address the root cause of the Debian packaging problem in the least invasive way possible.
This approach will make the generated package more robust for future upgrades.

3ameyaHune

If the patch addressing the root cause is useful to the upstream project, send it
to the upstream maintainer.

10.2 Customized debian/rules

Flexible customization of the Pazgen 6.5 is achieved by adding appropriate override_dh_* targets and
their rules.

When a special operation is required for a certain dh_foo command invoked by the dh command, its
automatic execution can be overridden by adding the makefile target override_dh_foo in the debian/rules
file.

The build process may be customized via the upstream provided interface such as arguments to the
standard source build system commands, such as:

« configure,
* Makefile,
* «python -m build», or

* Build.PL.

56

[7IABA 10. MORE ON PACKAGING 10.3. VARIABLES FOR DEBIAN/RULES

In this case, you should add the override_dh_auto_build target with «dh_auto_build -- arguments».
This ensures that arguments are passed to the build system after the default parameters that dh_auto_build
usually passes.

Moackaska

Avoid executing bare build system commands directly if they are supported by
the dh_auto_build command.

Cwm.:

* «Pa3gen 5.7» for the basic example.

* «Pa3zgen 11.3» to be reminded of the challenge involving the underlying build system.
» «Pa3gen 11.10» for multiarch customization.

* «Pa3zgen 11.6» for hardening customization.

10.3 Variables for debian/rules

HekoTopble onpeaeneHns nepeMeHHbIX, KOTOpble MOryT oka3aTbcA nosesHoiMun Ans debian/rules, Mox-
HO HaliTh B (halinax B katanore lusrishareldpkgl/. B yactHoCTK:

pkg-info.mk SetDEB_SOURCE, DEB_VERSION, DEB_VERSION_EPOCH_UPSTREAM, DEB_VERSION_UPST
DEB_VERSION_UPSTREAM, and DEB_DISTRIBUTION variables obtained from dpkg-parsechangelog(1).
(useful for backport support etc..)

vendor.mk SetDEB_VENDOR and DEB_PARENT_VENDOR variables; and dpkg_vendor_derives_from
macro obtained from dpkg-vendor(1). (useful for vendor support (Debian, Ubuntu, ...).)

architecture.mk Set DEB_HOST_* and DEB_BUILD_* variables obtained from dpkg-architecture(1).

buildflags.mk Set CFLAGS, CPPFLAGS, CXXFLAGS, OBJCFLAGS, OBJCXXFLAGS, GCJFLAGS,
FFLAGS, FCFLAGS, and LDFLAGS build flags obtained from dpkg-buildflags(1).

For example, you can add an extra option to CONFIGURE_FLAGS for linux-any target architectures
by adding the following to debian/rules:

DEB_HOST_ARCH_0S ?= $(shell dpkg-architecture -gDEB_HOST_ARCH_0S)

ifeq ($(DEB_HOST_ARCH_0S), linux)
CONFIGURE_FLAGS += --enable-wayland
endif

Cwm. «Pa3pgen 11.10», dpkg-architecture(1) n dpkg-buildflags(1).

10.4 HoBbIi BbINMYCK OCHOBHOI BETKU

When a new upstream release tarball debhello-newvwesion.tar.xz is released, the Debian source package
can be updated by invoking commands in the old source tree as:

[debhello-0.0] $ uscan
. debhello-newversion.tar.xz downloaded
[debhello-0.0] $ uupdate -v newversion ../debhello-newversion.tar.xz

* The debian/watch file in the old source tree must be a valid one.

¢ This make symlink ../debhello_newvwesion.orig.tar.xz pointing to ../debhello-newvwesion.tar.xz.

57

[7IABA 10. MORE ON PACKAGING 10.5. MANAGE PATCH QUEUE WITH DQUILT

* Files are extracted from ../debhello-newvwesion.tar.xz to ../debhello-newversionl

« Files are copied from ../debhello-oldversionidebianl/ to ../debhello-newvesionidebian/ .

After the above, you should refresh debian/patches/* files (see «Pasgen 10.5») and update debian/changelog
with the dch(1) command.

When «debian uupdate» is specified at the end of line in the debian/watch file, uscan automatically
executes uupdate(1) after downloading the tarball.

10.5 Manage patch queue with dquilt

You can add, drop, and refresh debian/patches/* files with dquilt to manage patch queue.

¢ Add a new patch debian/patches/bugname.patch recording the upstream source modification on
the file buggy _file as:

[debhello-0.0] $ dquilt push -a
[debhello-0.0] $ dquilt new bugname.patch
[debhello-0.0] $ dquilt add buggy_file
[debhello-0.0] $ vim buggy_file

[debhello-0.0]
[debhello-0.0]
[debhello-0.0]

dquilt refresh
dquilt header -e
dquilt pop -a

©@ B &8

« Drop (== disable) an existing patch

— Comment out pertinent line in debian/patches/series
— Erase the patch itself (optional)

« Refresh debian/patches/* files to make «dpkg-source -b» work as expected after updating a
Debian package to the new upstream release.

[debhello-0.0] $ uscan; uupdate # updating to the new upstream release
[debhello-0.0] $ while dquilt push; do dquilt refresh ; done
[debhello-0.0] $ dquilt pop -a

- If conflicts are encountered with «dquilt push» in the above, resolve them and run «dquilt
refresh» manually for each of them.

10.6 Build commands

Here is a recap of popular low level package build commands. There are many ways to do the same
thing.

« dpkg-buildpackage = aapo nHcTpymeHTta A5 c6opku naketa
« debuild = dpkg-buildpackage + lintian (c60opka ¢ O4MLLEHHbIMW NEPEMEHHBLIMU OKPYXXEHWST)
« schroot = core of the Debian chroot environment tool

« sbuild = dpkg-buildpackage on custom schroot (build in the chroot)

10.7 Note on sbuild

The sbuild(1) command is a wrapper script of dpkg-buildpackage which builds Debian binary packages
in a chroot environment managed by the schroot(1) command. For example, building for Debian unstable
suite can be done as:

[debhello-0.0] $ sudo sbuild -d unstable

58

[7IABA 10. MORE ON PACKAGING 10.8. SPECIAL BUILD CASES

In schroot(1) terminology, this builds a Debian package in a clean ephemeral chroot «chroot:unstable-
amd64-sbuild» started as a copy of the clean minimal persistent chroot «source:unstable-amd64-
sbuild».

This build environment was set up as described in «Pa3zgen 4.6» with «sbuild-debian-developer-
setup -s unstable» which essentially did the following:

[~] $ sudo mkdir -p /srv/chroot/dist-amd64-sbuild

[~] $ sudo sbuild-createchroot unstable /srv/chroot/unstable-amd64-sbuild http:// «
deb.debian.org/debian

[~] $ sudo usermod -a -G sbuild <your_user_name>

[~] $ sudo newgrp -

The schroot(1) configuration for unstable-amd64-sbuild was generated at letc/schroot/chroot.d/unstable-
amd64-sbuild. $suffix :

[unstable-amd64-sbuild]
description=Debian sid/amd64 autobuilder
groups=root, sbuild
root-groups=root, sbhuild
profile=sbuild
type=directory
directory=/srv/chroot/unstable-amd64-sbuild
union-type=over lay
rpe:
» The profile defined in the letc/schroot/sbuild/ directory is used to setup the chroot environment.
« Isrvichroot/unstable-amd64-sbuild directory holds the chroot filesystem.
« letcisbuild/lunstable-amd64-sbuild is symlinked to Isrvichroot/unstable-amd64-sbuild .

You can update this source chroot «source:unstable-amd64-sbuild» by:

[~] $ sudo sbuild-update -udcar unstable

You can log into this source chroot «source:unstable-amdé64-sbuild» by:
[~] $ sudo sbuild-shell unstable

lNoackaska

If your source chroot filesystem is missing packages such as libeatmydatal,
=y ccache, and lintian for your needs, you may want to install these by logging into

It.

10.8 Special build cases

The orig.tar.xz file may need to be uploaded for a Debian revision other than 0 or 1 under some
exceptional cases (e.g., for a security upload).

When an essential package becomes a non-essential one (e.g., adduser), you need to remove it
manually from the existing chroot environment for its use by piuparts.

10.9 Upload orig.tar.xz

When you first upload the package to the archive, you need to include the original orig.tar.xz source,
too.

Ecnun Homep pegakuum Debian Bawero naketa He sBnsetcs 1 nam 0, To 3To NPOMCXOAMT MO ymoya-
Hut0. B npoTnBHOM cny4vae, Bam crieflyeT nepegartb onuuio -sa komaHae dpkg-buildpackage.

59

https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/Chroot

[7IABA 10. MORE ON PACKAGING 10.10. TMPOIMYIEHHBIE 3AIPY3KU

L]

dpkg-buildpackage -sa

L]

debuild -sa

¢ shuild --debbuildopts=-sa

L]

gbp buildpackage -sa

MNoackaska

On the other hand, the -sd option will force the exclusion of the original orig.tar.xz

source.

Moackaska

Security uploads require including the orig.tar.xz file.

10.10 TlponyweHHbIe 3arpys3Ku

Ecnu Bbl co3gaéTte HeckosbKo 3anuceii B paiine debian/changelog v nponyckaeTe 3arpy3sku, To Bam
cnepyeT co3gaTb COOTBETCTBYHOLWMIA thaiin *_.changes, BkAHOUaOLWWiA BCE M3MEHEHUS C MOC/1eaHel 3a-
rpy3ku. 3TO MOXHO caenaTb, nepeaas dpkg-buildpackage onuumto -v ¢ ykazaHuem nocriefHein 3arpyeH-
HOW BepcuK, Hanpumep, 1.2.

¢ dpkg-buildpackage -v1.2

e debuild -v1.2

¢ shuild --debbuildopts=-v1.2
« gbp buildpackage -v1.2

10.11 Bug reports

The reportbug(1l) command used for the bug report of binarypackage can be customized by the files in
usr/sharelbuglbinarypackagel.
KomaHga dh_bugfiles yctaHaBnnBaeT atu dhaiinibl n3 wabnoHHbIX aitnos B katasiore debianl.

« debian/dsouyHsitinakem.bug-control - usr/share/bugl/osouyHsiiinakemlcontrol

— OTOT chalinn CoAePXKUT HEKOTOPLIE YKa3aHWs, TakMe Kak nepeHanpasieHusi oT4éTa 06 owmnbke
[Ipyromy nakery.

 debian/dsouyHsitinakem.bug-presubj - usrisharelbugldsouyHsilinakemlpresubj
— 3T0T (haiin oTobpaxaeTcs Nosb30BaTesio C NOMOLLbI KOMaHbl reportbug.
« debian/dsouyHsitinakem.bug-script — usrisharelbugl/osouyHsitinakem nnu usrlsharelbuglogouyHbitinakeml

- KomaHga reportbug 3anyckaeT 3TOT cueHapwii Ans co3gaHns wabnoHHoro dhaina ans oT-
yéTa 06 oLnbKe.

60

[7IABA 10. MORE ON PACKAGING 10.11. BUG REPORTS

See dh_bugdfiles(1) and «reportbug’s Features for Developers (README.developers)»

Moackaska

If you always remind the bug reporter of something or ask them about their

situation, use these files to automate it.

61

file:///usr/share/doc/reportbug/README.developers.gz

naBa 11

NMpoAaBUHYTbIE TEMbI paboTbl HAA
nakeTtom

Let's describe advanced topics on Debian packaging.

11.1 Historical perspective

Let me oversimplify historical perspective of Debian packaging practices focused on the non-native
packaging.

Debian was started in 1990s when upstream packages were available from public FTP sites such
as Sunsite. In those early days, Debian packaging used Debian source format currently known as the
Debian source format «1.0»:

« The Debian source package ships a set of files for the Debian source package.

— package_version.orig.tar.xz : symlink to or copy of the upstream released file.
- package_version-revision.diff.gz : «One big patch» for Debian modifications.
— package_version-revision.dsc : package description.

« Several workaround approaches such as dpatch, dbs, or cdbs were deployed to manage multiple
topic patches.

The modern Debian source format «3.0 (quilt)» was invented around 2008 (see «ProjectsDebSrc3.0»):
« The Debian source package ships a set of files for the Debian source package.

— package_version.orig.tar.?z : symlink to or copy of the upstream released file.

— package_version-revision.debian.tar.?z : tarball of debian/ for Debian modifications.
* The debian/sourcelformat file contains «3.0 (quilt)».
* Optional multiple topic patches are stored in the debian/patches/ directory.

— package_version-revision.dsc : package description.

« The standardized approach to manage multiple topic patches using quilt(1) is deployed for the
Debian source format «3.0 (quilt)».

Most Debian packages adopted the Debian source formats «3.0 (quilt)» and «3.0 (native)».

Now, the git(1) is popular with upstream and Debian developers. The git and its associated tools
are important part of the modern Debian packaging workflow. This modern workflow involving git will be
mentioned later in «[naga 12».

62

https://www.debian.org/doc/manuals/project-history/index.en.html
https://en.wikipedia.org/wiki/Sunsite
https://wiki.debian.org/Projects/DebSrc3.0

[7IABA 11. TNPOABUVHYTbIE TEMbI PABOTHI ... 11.2. CURRENT TRENDS

11.2 Current trends

Current Debian packaging practices and their trends are moving target. See:

« «Debian Trends» — Hints for «De facto standard» of Debian practices

Build systems: dh

Debian source format: «3.0 (quilt)»
VCS: git
VCS Hosting: salsa

Rules-Requires-Root: adopted, fakeroot
Copyright format: DEP-5

« «debhelper-compat-upgrade-checklist(7) manpage» — Upgrade checklist for debhelper
* «DEP - Debian Enhancement Proposals» — Formal proposals to enhance Debian
You can also search entire Debian source code data by yourself, too.
» «Debian Sources» — code search tool
- «Debian Code Search» — wiki page describing its usage

* «Debian Code Search» — another code search tool

11.3 Note on build system

Auto-generated files of the build system may be found in the released upstream tarball. These should
be regenerated when Debian package is build. E.qg.:

* «dh $@ --with autoreconf» should be used in the debian/rules if Autotools (autoconf + automake)
are used.

Some modern build system may be able to download required source codes and binary files from
arbitrary remote hosts to satisfy build requirements. Don’t use this download feature. The official Debian
package is required to be build only with packages listed in Build-Depends: of the debian/control file.

11.4 HenpepbiBHasA NHTErpayusd

The dh_auto_test(1) command is a debhelper command that tries to automatically run the test suite
provided by the upstream developer during the Debian package building process.

The autopkgtest(1) command can be used after the Debian package building process. It tests generated
Debian binary packages in the virtual environment using the debian/tests/control RFC822-style metadata
file as continuous integration (Cl). See:

« Documents in the lusr/share/doclautopkgtest/ directory

* «4. autopkgtest: Automatic testing for packages» of the «Ubuntu Packaging Guide»

Kpome Toro, B Debian cyLecTByeT el HECKO/IbKO APYrMX MHCTPYMEHTOB HEMpPepbIBHO UHTErpaLmu.
¢ The Salsa offers «Pazgen 12.3».

« The debci package: Cl platform on top of the autopkgtest package

« TakeT jenkins: nnatcopma HenpepbIBHOM MHTErpaumm obLero Ha3Ha4eHms

63

https://trends.debian.net/
https://salsa.debian.org/
https://dep-team.pages.debian.net/deps/dep5/
https://dep-team.pages.debian.net/
https://sources.debian.org/
https://wiki.debian.org/DebianCodeSearch
https://dcs.zekjur.net/
https://en.wikipedia.org/wiki/Continuous_integration
https://packaging.ubuntu.com/html/auto-pkg-test.html
https://salsa.debian.org

[7IABA 11. TNPOABUVHYTbIE TEMbI PABOTHI ... 11.5. MPEA3AIPY3KA

11.5 [Mpep3arpyska

Debian cares about supporting new ports or flavours. The new ports or flavours require bootstrapping
operation for the cross-build of the initial minimal native-building system. In order to avoid build-dependency
loops during bootstrapping, the build-dependency needs to be reduced using the DEB_BUILD_PROFILES
environment variable.

See Debian wiki: «BuildProfileSpec».

lNoackaska

If a core package foo build depends on a package bar with deep build
dependency chains but bar is only used in the test target in foo, you can safely
mark the bar with <Inocheck> in the Build-depends of foo to avoid build loops.

11.6 YcuneHue 6e30MaCHOCTU KOMNUAATOpa

The compiler hardening support spreading for Debian jessie (8.0) demands that we pay extra attention
to the packaging.
Bam cnegyet nogpo6HO M3HAKOMUTLCA CO CNeAyHOLLEe CNPaBOYHO AOKYMEHTaLMei:

* Debian wiki: «Hardening»
« Debian wiki: «<Hardening Walkthrough»

KomaHaa debmake no6asnset wabnoHHble koMMeHTapum B thaiin debian/rules, Tpebytowmecs s
DEB_BUILD_MAINT_OPTIONS, DEB_CFLAGS_MAINT_APPEND v DEB_LDFLAGS_MAINT_APPEND
(cm. «'naBa 5» 1 dpkg-buildflags(1)).

11.7 TMoBTOpsieMasa co0pKa

Here are some recommendations to attain a reproducible build result.
* He Bk/toyaiiTe B pe3ysibtaT BPeMEHHYI0 METKY Ha OCHOBE CUCTEMHOIO BPEMEHMN.

« Don’t embed the file path of the build environment.

Use «dh $@» in the debian/rules to access the latest debhelper features.

Export the build environment as «LC_ALL=C.UTF-8» (see «Pa3gen 13.1»).

Set the timestamp used in the upstream source from the value of the debhelper-provided environment
variable $SOURCE_DATE_EPOCH.

e Mogpo6HOCTM MOXHO HaliTU Ha BUKU-CTpaHuLe «ReproducibleBuildss.

- «Pykosogacteo ReproducibleBuilds».
- «ReproducibleBuilds TimestampsProposal».

Reproducible builds are important for security and quality assurance. They allow independent verification
that no vulnerabilities or backdoors have been introduced during the build process.

Ynpasnswowuin haiin umMsi-ucxoOH020-K00a_BepCcusi-Ucxo0Ho20-koda_apxumexkmypa.buildinfo, co-
3naBaembiii dpkg-genbuildinfo(1), cogepxuT nHdpopmanmio o c6opoyHom okpyxxeHmmn. Cum. deb-buildinfo(5)

64

https://wiki.debian.org/DebianBootstrap
https://wiki.debian.org/BuildProfileSpec
https://wiki.debian.org/Hardening
https://wiki.debian.org/HardeningWalkthrough
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/ReproducibleBuilds/Howto
https://wiki.debian.org/ReproducibleBuilds/TimestampsProposal

[7IABA 11. TNPOABUVHYTbIE TEMbI PABOTHI ... 11.8. NMEPEMEHHBIE NMOACTAHOBKU

11.8 TlMepemMeHHble NOACTAHOBKU

Kpowme Toro, dpaiin debian/control onpegenseT 3aBUCMOCTM NaKeTa, B KOTOPbIX MOXET MCOMN/Ib30BaTb-
CA «MexaHU3M MoACTaHOBKM MepeMeHHbIX» (substvar), KoTopbllii 0CBO6OXAAET CONPOBOXAAKOLWMX Ma-
KeTa OT pyTUHHOW paboThbl N0 OTC/AEXUBaHMIO B60MNLLUMHCTBA MNPOCTLIX 3aBUCMMOCTEN nakeTa. Cm. deb-
substvars(5).

The debmake command supports the following substvars:

* ${misc:Depends} 015 Bcex ABONYHbLIX NAKETOB
* ${misc:Pre-Depends} a/19 BCEX My/IbTUAPXUTEKTYPHbIX NMaKeToB

* ${shlibs:Depends} a5 Bcex ABONYHbIX NAKETOB C UCMOSHAEMbIMY haliiaMmn 1 nakeTos 6ubnmno-
Tek

« ${python:Depends} 4515 BCEX NAaKeTOB C KOAOM Ha si3blke Python
« ${python3:Depends} a/11 BCEX NAKETOB C KOAOM Ha si3blke Python3
e ${perl:Depends} ans Bcex nakeToB ¢ KOAOM Ha SA3blke Perl

* ${ruby:Depends} 015 Bcex NakeToB C KOAOM Ha A3blke Ruby

For the shared library, required libraries found simply by «objdump -p /path/to/program | grep NEEDED»

are covered by the shlib substvar.

For Python and other interpreters, required modules found simply looking for lines with «import»,
«use», «require», etc., are covered by the corresponding substvars.

[ns ocTasnibHbIX NPOrpamMmm, He NCNoJb3YLWMX COOCTBEHHbIE NEePEMEHHbIE NOACTAHOBKM, 3aBUCMMO-
CTV 06pabaTtbiBalOTCA NepPeMEHHO misc.

[na nporpamm komaHgHol 060104k POSIX HeT npocToro cnocoba onpefeneHns 3aBUCUMOCTEN,
MO3TOMY MX 3aBUCMMOCTM He 06pabaTbiBalOTCA HUKAKON NepeMeHHO.

[ns 6ubnuotek n mogyneii, TPeOYHLMXCS Yepes MexXaHn3M AVHAMUYECKOI 3arpy3ku, BKoYas Me-
XaHu3m «GObject-MHTpocnekLms», HET NPOCTOro CNoco6a onpeaeneHns 3aBMCMMOCTER, MO3TOMY KX 3a-
BMCUMOCTUN He 06pabaTbiBatOTCS HUKAKOM NepPeMEHHONA.

11.9 [MaxkeT 6GUGINOTEKU

Packaging library software requires you to perform much more work than usual. Here are some reminders
for packaging library software:

 The library binary package must be named as in «Pa3gen 11.17».

» Debian ships shared libraries such as lustllib/<triplet>/libfoo-0.1.s0.1.0.0 (see «Pa3gen 11.10»).
» Debian encourages using versioned symbols in the shared library (see «Pa3gen 11.16»).
» Debian He nocTasnser libtool-apxusbl 6ubnnoTek *.la.

» Debian discourages using and shipping *.a static library files.

Before packaging shared library software, see:

* «Chapter 8 - Shared libraries» of the «Debian Policy Manual»

¢ «10.2 Libraries» of the «Debian Policy Manual»

e «6.7.2. Libraries» of the «Debian Developer’s Reference»

[na nonyyeHns nCTopnyeckux ceefeHnii obpatutecs K cneaytoLeli 4OKyMeHTaumu:

» «CnaceHve u3 afia 3aBucumocteri» 1

- This encourages having versioned symbols in the shared library.

13TOT AOKYMEHT 6bIN HaNMcaH A0 nosenexHns gaiina symbols.

65

https://www.debian.org/doc/debian-policy/ch-source.html#s-substvars
https://wiki.gnome.org/Projects/GObjectIntrospection
https://www.debian.org/doc/debian-policy/ch-sharedlibs.html
https://www.debian.org/doc/debian-policy/ch-files.html#libraries
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-libraries
https://debconf4.debconf.org/talks/dependency-hell/img1.html

[7IABA 11. TNPOABUVHYTbIE TEMbI PABOTHI ... 11.10. MULTIARCH

¢ «Debian Library Packaging guide» 2

— Please read the discussion thread following its announcement, too.

11.10 Multiarch

Multiarch support for cross-architecture installation of binary packages (particularly i386 and amd64, but
also other combinations) in the dpkg and apt packages introduced in Debian wheezy (7.0, May 2013),
demands that we pay extra attention to packaging.

Bam cnegyet nogpo6HO M3HAKOMUTLCS CO CNEAYHOLLEN CNPaBOYHO AOKYMEHTaLMEN:

¢ Ubuntu Bukn (ocHoBHas BeTka pa3paboTku)
- «MultiarchSpec»
» Debian Buku (cutyaums B Debian)

- «[Moggepxka MynbTUAPXUTEKTYPHOCTN B Debianx»
- «Multiarch/Implementation»

MynbTMapXMTEKTYPHOCTb BK/IHOYAETCA C MOMOLLBIO 3HAYeHUss <TPoMku> Buaa i386-linux-gnu nnu
x86_64-linux-gnu B nyTn ycTaHOBKM pa3gensembix 6ubnuotek suga lusrllib/<rpoiika>/ n T. 4.

» 3HauyeHne <TPOWKK>, BHyTPEHHE HeobXoaMMoe ans cueHapues debhelper, yctaHaBnmBaeTcs ca-
MUMU CLUEHapUsIMK HesiBHO. CONPOBOXJALLEMY HE HY)XHO 06 3TOM GECTMOKOUTBLCS.

« The <triplet> value used in override_dh_* target scripts must be explicitly set in the debian/rules
file by the maintainer. The <triplet> value is stored in the $(DEB_HOST_MULTIARCH) variable in
the following debian/rules snippet example:

DEB_HOST_MULTIARCH = $(shell dpkg-architecture -gDEB_HOST_MULTIARCH)
override_dh_install:
mkdir -p packagel/1lib/$(DEB_HOST_MULTIARCH)
cp -dR tmp/1lib/. packagel/1ib/$(DEB_HOST_MULTIARCH)
Cm.:
e «Pa3gen 10.3»

* «Pa3gen 17.2»
* «Pa3gen 11.12»

» «dpkg-architecture(1) manpage»

11.11 Split of a Debian binary package

For well behaving build systems, the split of a Debian binary package into small ones can be realized as
follows.

« Co3paiite 3anucu ¢ onpegeneHvsamMmn MeTafaHHbIX ABOMYHBLIX naketax B paiine debian/control
0151 BCeX ABOWYHbIX NaKEeTOB.

e Ykaxute Bce nyTu K haiinam (oTHocutensHo katanra debian/tmp) B cooTBeTcTBYOWMX (harnax
debian/osouyHsitinakem.install.

C npumepamMm MOXHO 03HAaKOMUTbLCS B HACTOSILLEM PYKOBOACTBE:
e «Pasgen 15.11» (Ha ocHoBe Autotools)

* «Pa3gen 15.12» (Ha ocHoBe CMake)

An intuitive and flexible method to create the initial template debian/control file defining the split of
the Debian binary packages is accommodated with the -b option. See «Pa3gen 17.2».

2The strong preference is to use the SONAME versioned -dev package names over the single -dev package name in «Chapter
6. Development (-DEV) packages», which does not seem to be shared by the former ftp-master (Steve Langasek). This document
was written before the introduction of the multiarch system and the symbols file.

66

https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html
https://lists.debian.org/debian-devel/2004/06/msg00069.html
https://wiki.ubuntu.com/MultiarchSpec
https://wiki.debian.org/Multiarch
https://wiki.debian.org/Multiarch/Implementation
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html#devpkg
https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html#devpkg

[7IABA 11. TNPOABUVHYTbIE TEMbI PABOTHI ... 11.12. CUEHAPUW V1 TIPVUIMEPHI ...

11.12 CueHapuu 1 NpuMepbl pasgeneHus naketa

Huxe npuBOAMTCA HECKOSIbKO TUMUYHBLIX CLUEHApPUEB pasfenieHns MybTUapXUTeKTYpHOro naketa AJ/s
CcnepyrLmx NpuMepoB UCXOAHOIO KOAa OCHOBHOI BETKM pa3paboTku, B KOTOPbIX UCMOSIb3YETCA KOMaH4a
debmake:

« a library source libfoo-1.0.tar.xz
¢ atool source bar-1.0.tar.xz written in a compiled language

« atool source baz-1.0.tar.xz written in an interpreted language

0BoUYHbIlinakermun Architecture: | Multi- Copaepxumoe naketa
Arch:

libfoo1 lib” any same pazfensemas 6ubnoTeka, BO3MOXHa
COBMeCTHas yCTaHOBKa

libfoo-dev dev’ any same 3aro/10BOYHble haiisibl pa3gensiemoi
6MONNOTEKN 1 NPOY., BO3MOXHA
COBMeCTHas ycTaHOBKa

libfoo-tools bin” any foreign nporpamMmsbl C NOAAEPXKO BPEMEHN
UCMOJTHEHNA, COBMECTHAas YCTaHOBKa
HEBO3MOXHa

libfoo-doc doc” all foreign haiinbl JOKYMEHTaLMmn pasgensiemon
6UbIMoTEKN

bar bin any foreign CKOMMWMPOBAHHbIA haiinbl
nporpammbl, COBMECTHas yCTaHBKa
HEBO3MOXHa

bar-doc doc” all foreign haiinibl JOKYMeHTaL M nporpaMmbl

baz script all foreign thaiinbl UHTEPNPETMPYEeMON
nporpammbl

11.13 Multiarch library path

Debian policy requires to comply with the «Filesystem Hierarchy Standard (FHS), version 3.0», with the
exceptions noted in «File System Structure».

The most notable exception is the use of lusrllib/<triplet>] instead of lusr/lib<qual>/ (e.g., llib32/
and /lib64/) to support a multiarch library.

Ta6nuua 11.2 Onumn NyTs My/IbTUAPXUTEKTYPHbIX BMOGNNOTEK

Knaccunuecknii nytb MynbTapxmTekTypHbIA NyTb MynbTapXuTekTyHblii NyTb
Ansa i386 Ana amdé4

lib/ Nibli386-linux-gnul Nlib/x86_64-linux-gnu/

lusrllib/ lusrllibli386-linux-gnu/ lusrllib/x86_64-linux-gnu/

[na naketoB Ha ocHOBe Autotools, B KoTopbix ncnosnb3yetcs naket debhelper ¢ (compat>=9), ycTa-
HOBKa 3TOro NyTuW BbINOMHAETCA aBTOMaTUyYeckun ¢ nomoLlbio komaHasl dh_auto_configure.

Mpwv paboTe ¢ ApyrvMK NakeTaMu, UCMOosb3YIOLLMMN HENOAAEPXXMBAEMbIE CUCTEMbI COOPKU, BaM Crie-
[yeT BPYYHYI0 U3MEHUTb MYTb YCTAHOBKM YKa3aHHbIM HMXe Cnoco6oM.

* If «.Iconfigure» is used in the override_dh_auto_configure target in debian/rules, make sure to
replace it with «dh_auto_configure --» while re-targeting the install path from Jusr/lib/ to Jusr/lib/$(DEB_HOST_

« 3ameHuTe Bce nyTu c lusrllibl Ha lusrllibl/*l B thaitnax debian/foo.install.

All files installed simultaneously as the multiarch package to the same file path should have exactly
the same file content. You must be careful with differences generated by the data byte order and by the
compression algorithm.

®dalinbl pasgensemMbix 6M6/IMOTEK, pacnonoXeHHble B katasiorax no ymonyanuio, lusrllibl v lusrilib/<tpoiika>/,
3arpy)xalTcsi aBTOMaTnu4ecKu.

67

https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://www.debian.org/doc/debian-policy/ch-opersys.html#file-system-structure

[7IABA 11. TNPOABUVHYTbIE TEMbI PABOTHI ... 11.14. MULTIARCH HEADER FILE PATH

For shared library files in another path, the GCC option -l must be set by the pkg-config command
to make them load properly.

11.14 Multiarch header file path

B mynbTnapxmTekTypHoii cucteme Debian GCC no ymonyaHuio BkntoyaeT u lusrlincludel, v lusrlinclude/<tpoiika>/.
If the header file is not in those paths, the GCC option -l must be set by the pkg-config command to
make "#include <foo.h>" work properly.

Ta6nuua 11.3 Onumn Nyt MyNbTUAPXUTEKTYPHOrO 3aro/I0BOYHOIO dpana

Knaccuueckuii nyTb

MynbLTapXxmTekTypHbIA NyTb
Ans i386

MynbLTapxmTekTyHblii NyTb
Aana amdé4

lusrlinclude/

lusrlincludeli386-linux-gnu/

lusrlinclude/x86_64-linux-gnu/

lusrlincludelumsinakems

allusrlincludel/i386-linux-

Jusrlinclude/x86_64-linux-

gnulumsinakemal gnulumsinakemal
lustr/libli386-linux- lusrllib/x86_64-linux-
gnulumsanakemal gnulumsinakemal

The use of the lusrllibi<triplet>Ipackagenamel path for the library files allows the upstream maintainer
to use the same install script for the multiatch system with lusr/lib/<triplet> and the biarch system with
lusrllib<qual>/. 3

The use of the file path containing packagename enables having more than 2 development libraries
simultaneously installed on a system.

11.15 Multiarch *.pc file path

Mporpamma pkg-config ncnonb3yetca ans nosyvyeHnss MHopmauum o6 YyCTaHOBNEHHbIX B CUCTEME
6uonmnotekax. OHa coxpaHsieT CBOU MapaMeTpbl HACTPOIik1 B oaiine *.pc 1 ucnonb3yetcsa Ans ycra-
HoBkW onuuii -1 n -1 gns GCC.

Ta6nuua 11.4 Onuun NyTu K haiiny *.pc

Knaccuueckuii nyTb MynbTapxmTekTypHbIiA NYTb MynbTUuapxmTekTyHblii NyTb
Ans i386 Ans amdé64

lusrllib/pkgconfig/ lusrllibli386-linux- lusrllib/x86_64-linux-
gnu/pkgconfigl/ gnu/pkgconfig/

11.16 Buobnnotreka cMMBOJIOB

The symbols support in dpkg introduced in Debian lenny (5.0, May 2009) helps us to manage the
backward ABI compatibility of the library package with the same package name. The DEBIAN/symbols
file in the binary package provides the minimal version associated with each symbol.

An oversimplified method for the library packaging is as follows.

« Extract the old DEBIAN/symbols file of the immediate previous binary package with the «dpkg-
deb -e» command.

- JInbo MOXHO UCMOMb30BaTh KOMaHAY Mc Ans pacnakoBku chainna DEBIAN/symbols.
« Ckonupyliite ero B (haiin debian/osouyHsilinakem.symbols.

— Ecnv 310 nepB.blii NakeT, TO UCNosb3yiTe NycTon aiin.

3This path is compliant with the FHS. «Filesystem Hierarchy Standard: /usr/lib : Libraries for programming and packages»
states «Applications may use a single subdirectory under lust/lib. If an application uses a subdirectory, all architecture-dependent
data exclusively used by the application must be placed within that subdirectory.»

68

https://www.debian.org/doc/packaging-manuals/fhs/fhs-2.3.html#USRLIBLIBRARIESFORPROGRAMMINGANDPA

[7IABA 11. TNPOABUVHYTbIE TEMbI PABOTHI ... 11.17. LIBRARY PACKAGE NAME

* CobepuTe ABOVNYHbIA MakeT.

- If the dpkg-gensymbols command warns about some new symbols:

* Extract the updated DEBIAN/symbols file with the «dpkg-deb -e» command.
* YpaanuTe Homep pedakuun Bepcun Debian, Hanpumep, -1, 3 gaiina.
* CkonupyiTe ero B haiin debian/osouyHbitinakem.symbols.
* [OBTOPHO cobepuTe ABOMYHbIA NaKeT.
- If the dpkg-gensymbols command does not warn about new symbols:

* PaboTta c 6M6MOTEKOI 3aBepLUEHa.
Moapo6GHbIE CBEAEHUSI MOXHO MOJTYYNTb, 06PaTUBLUMCH K Criefytoweli CpaBoYHON MHChOpPMaLmK:
¢ «8.6.3 The symbols system» of the «Debian Policy Manual»
* «dh_makeshlibs(1) manapage»
« «dpkg-gensymbols(1) manapage»
« «dpkg-shlibdeps(1) manapage»
» «deb-symbols(5) manapage»
Takxke cnegyeT 03HaKOMUTLCA CO CNeAyoLLei oKyMeHTal eii:
¢ Debian wiki: «UsingSymbolsFiles»
« Debian wiki: «Projects/ImprovedDpkgShlibdeps»
« Debian kde team: «Working with symbols files»
* «Pa3gen 15.11»
* «Pa3gen 15.12»

Moackaska

For C++ libraries and other cases where the tracking of symbols is problematic,

follow «8.6.4 The shlibs system» of the «Debian Policy Manual», instead. Please
make sure to erase the empty debianlbinarypackage.symbols file generated by
the debmake command. For this case, the DEBIAN/shlibs file is used.

11.17 Library package name

Let's consider that the upstream source tarball of the libfoo library is updated from libfoo-7.0.tar.xz to
libfoo-8.0.tar.xz with a new SONAME major version which affects other packages.

The binary library package must be renamed from libfoo7 to libfoo8 to keep the unstable suite system
working for all dependent packages after the upload of the package based on the libfoo-8.0.tar.xz.

BHumMaHue

unstable suite become broken just after the library upload even if a binNMU
upload is requested. The binNMU may not happen immediately after the upload
due to several reasons.

: If the binary library package isn't renamed, many dependent packages in the

MakeT -dev go/mKeH COOTBETCTBOBATb cneanywunm npaeuniamMm MMeHOBaHUA:

69

https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#the-symbols-system
https://wiki.debian.org/UsingSymbolsFiles
https://wiki.debian.org/Projects/ImprovedDpkgShlibdeps
https://qt-kde-team.pages.debian.net/symbolfiles.html
https://www.debian.org/doc/debian-policy/ch-sharedlibs.html#the-shlibs-system

[7IABA 11. TNPOABUVHYTbIE TEMbI PABOTHI ... 11.18. CMEHA BUVB/TMOTEK

* cnonbayiite ums naketa -dev 6e3 Homepa Bepcuu: libfoo-dev

This is the typical one for leaf library packages.

B apxuBe MOXeT HaxoguTcAa TOIbKO OfHa BepCcUA NakeTa Cc UCXO4HbIM KOA0M 6MbnnoTeKn.

* The associated library package needs to be renamed from libfoo7 to libfoo8 to prevent
dependency breakage in the unstable suite during the library transition.

This approach should be used if the simple binNMU resolves the library dependency quickly
for all affected packages. (ABI change by dropping the deprecated API while keeping the
active APl unchanged.)

This approach may still be a good idea if manual code updates, etc. can be coordinated and
manageable within limited packages. (APl change)

¢ Mcnonbaylite nmeHa naketos -dev ¢ ykazaHuem Bepcun: libfoo7-dev n libfoo8-dev

- This is typical for many major library packages.
— B apxvBe MoryT HaxoauTcs ABe Bepcun NakeToB C UCXOAHLIM KOAOM 6UbMoTeKu.

* Bce 3aBuCUMble NakeT AOMKHbI 3aBUCKTb OT libfoo-dev.

* MycTb 1 libfoo7-dev, n libfoo8-dev npepoctasnstot libfoo-dev.

* The source package needs to be renamed as libfoo7-7.0.tar.xz and libfoo8-8.0.tar.xz
respectively from libfoo-?.0.tar.xz.

* B 3aBMCMMOCTM OT MakeTa NyTb YCTaHOBKK dhaiinos, Bkntovawowmii libfoo7 v libfoo8, co-
OTBETCTBEHHO, A1 3aroflIoBOYHbIX (hainoB 1 Npou., cneayet BbloMpaTb Tak, YToObl NX
MOXHO Obl/10 YCTAHOBUTb OIHOBPEMEHHO.

— Mo BO3MOXHOCTU HE UCMO/b3YATE C/INLIKOM XECTKMIA noaxog,

— This approach should be used if the update of multiple dependent packages require manual
code updates, etc. (API change) Otherwise, the affected packages become RC buggy with
FTBFS (Fails To Build From Source).

MNoackaska

If the data encoding scheme changes (e.g., latinl to utf-8), the same care as the

API change needs to be taken.

Cm. «Pa3gen 11.9».

11.18 CmeHa 6ubnunoTek

When you package a new library package version which affects other packages, you must file a transition
bug report against the release.debian.org pseudo package using the reportbug command with the ben
file and wait for the approval for its upload from the Release Team.

Y KOMaH/bl NOATOTOBKM BbIMyCKa MMEETCH «CUCTEMA OTC/IEXMBaHUS NepexofoB». CM. «Transitions».

MpepocTepexeHne

@ Please make sure to rename binary packages as in «Pazgen 11.17».

70

https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://ben.debian.net/#_query_language
https://ben.debian.net/#_query_language
https://wiki.debian.org/Teams/ReleaseTeam
https://release.debian.org/transitions/
https://wiki.debian.org/Teams/ReleaseTeam/Transitions

[7IABA 11. TNPOABUVHYTbIE TEMbI PABOTHI ... 11.19. BE3OITACHAS BINNMU-3AIPY3KA

11.19 bBbe3onacHas binNMU-3arpy3ska

A «binNMU» is a binary-only non-maintainer upload performed for library transitions etc. In a binNMU
upload, only the «Architecture: any» packages are rebuilt with a suffixed version number (e.g. version
2.3.4-3 will become 2.3.4-3+b1). The «Architecture: all» packages are not built.

The dependency defined in the debian/control file among binary packages from the same source
package should be safe for the binNMU. This needs attention if there are both «Architecture: any» and
«Architecture: all» packages involved in it.

* «Architecture: any» package: depends on «Architecture: any» foo package
- Depends: foo (= ${binary:Version})

* «Architecture: any» package: depends on «Architecture: all» bar package
- Depends: bar (= ${source:Version})

* «Architecture: all» package: depends on «Architecture: any» baz package

- Depends: baz (>= ${source:Version}), baz (<< ${source:Version}.0~)

11.20 OTnago4vHas uHhopmaums

The Debian package is built with the debugging information but packaged into the binary package after
stripping the debugging information as required by «Chapter 10 - Files» of the «Debian Policy Manual».
Cwm.

* «6.7.9. Best practices for debug packages» of the «Debian Developer’s Reference».
* «18.2 Debugging Information in Separate Files» of the «Debugging with gdb»

» «dh_strip(1) manapage»

o «strip(1) manapage»

« «readelf(1) manapage»

* «objcopy(1l) manapage»

¢ Debian wiki: «<DebugPackage»

« Debian wiki: «cAutomaticDebugPackages»

« CoobLleHne B cnncke paccbisikn debian-devel: «MHdopmaums o ctatyce aBToMaTMyeckux otna-
[0YHbIX NakeToB» (2015-08-15)

11.21 -dbgsym package

The debugging information is automatically packaged separately as the debug package using the dh_strip
command with its default behavior. The name of such a debug package normally has the -dbgsym suffix.
* The debianl/rules file shouldn’t explicitly contain dh_strip.

 Setthe Build-Depends to debhelper-compat (>=13) while removing Build-Depends to debhelper
in debian/control.

71

https://wiki.debian.org/binNMU
https://www.debian.org/doc/debian-policy/ch-files.html
https://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-dbg
https://sourceware.org/gdb/current/onlinedocs/gdb/Separate-Debug-Files.html#Separate-Debug-Files
https://wiki.debian.org/DebugPackage
https://wiki.debian.org/AutomaticDebugPackages
https://lists.debian.org/debian-devel/2015/08/msg00443.html
https://lists.debian.org/debian-devel/2015/08/msg00443.html

[7IABA 11. TNPOABUVHYTbIE TEMbI PABOTHI ... 11.22. DEBCONF

11.22 debconf

MakeT debconf no3BonsieT HaM HacTpanBaTb NakeTbl B XO1€ UX YCTAHOBKM ABYSIMA OCHOBHbIMMW CMNOCO-
6amu:

* HEVHTEPaKTUBHO M3 NpeanoCceBHbIX HACTPOEK NporpamMmmMbl yctaHoBKu Debian.
« interactively from the menu interface (dialog, gnome, kde, ...)

— yCTaHOBKa nakeTta: Bbi3blBaeTcs komaHzon dpkg

— YCTaHOB/EHHbI/ NakeT: Bbi3blBaeTcs komaHaoli dpkg-reconfigure

Bcé B3aumogeiicTBre ¢ No/b30BaTe/leM B XO4e YCTaHOBKM NakeTa A0/MKHbI obpabaTbiBarcs cucte-
moin debconf c nomoLlblo cnegyowmx daiinos.

« debianlbinarypackage.config

- 9107 config-cueHapuin debconf ncnonbsyercs ans Toro, 4To6bI 3a4aBaTh /1H06bIE BONPOCHI,
HeobxoaMMble ANs1 HACTPOKK NakeTa.

« debian/dsouyHsitinakem.template

- OtoT templates-caiin debconf ncnonsayetcsa gna Toro, 4To6bLI 3a4aBaTb N06LIE BONPOCHI,
Hao6XoaMMbIe ANl HACTPOKK NakeTa.

These debconf files are called by package configuration scripts in the binary Debian package
« DEBIANI/binarypackage.preinst

« DEBIANI/binarypackage.prerm

« DEBIANI/binarypackage.postinst

« DEBIANI/binarypackage.postrm

See dh_installdebconf(1), debconf(7), debconf-devel(7) and «3.9.1 Prompting in maintainer scripts»
in the «Debian Policy Manual».

72

https://www.debian.org/doc/debian-policy/ch-binary.html#prompting-in-maintainer-scripts

FnaBa 12

Packaging with git

Up to «IMaea 11», we focused on packaging operations without using Git or any other VCS. These
traditional packaging operations were based on the tarball released by the upstream as mentioned in
«Pa3gen 11.1».

Currently, the git(1) command is the de-facto platform for the VCS tool and is the essential part of
both upstream development and Debian packaging activities. (See Debian wiki «Debian git packaging
maintainer branch formats and workflows» for existing VCS workflows.)

3amevyaHue
Since the non-native Debian source package uses «diff -u» as its backend
technology for the maintainer modification, it can’'t represent modification
involving symlink, file permissions, nor binary data (March 2022 discussion on
debian-devel@l.d.o). Please avoid making such maintainer modifications even
though these can be recorded in the Git repository.

Since VCS workflows are complicated topic and there are many practice styles, | only touch on some

key points with minimal information, here.
Salsa is the remote Git repository service with associated tools. It offers the collaboration platform for

Debian packaging activities using a custom GitLab application instance. See:
e «Pa3pgen 12.1»
* «Pa3pgen 12.2»
e «Pa3pgen 12.3»

There are 2 styles of branch names for the Git repository used for the packaging. See «Pa3sgen 12.4».
There are 2 main usage styles for the Git repository for the packaging. See:

* «Pa3gen 12.5»

* «Pa3gen 12.13»

There are 2 notable Debian packaging tools for the Git repository for the packaging.
e gbp(1) and its subcommands:

- This is a tool designed to work mainly with «Pazgen 12.5».
— See «Pa3pgen 12.9».

e dgit(1) and its subcommands:

— This is a tool designed to work mainly with «Pa3zgen 12.13».
— This contains a tool to upload Debian packages using the dgit server.
— See «Pazgen 12.14».

73

https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Version_control
https://wiki.debian.org/GitPackagingSurvey
https://wiki.debian.org/GitPackagingSurvey
https://lists.debian.org/debian-devel/2022/03/msg00124.html
https://lists.debian.org/debian-devel/2022/03/msg00124.html
https://salsa.debian.org
https://en.wikipedia.org/wiki/GitLab

[7IABA 12. PACKAGING WITH GIT 12.1. SALSA REPOSITORY

12.1 Salsa repository

It is highly desirable to host Debian source code package on Salsa. Over 90% of all Debian source code
packages are hosted on Salsa. 1

The exact VCS repository hosting an existing Debian source code package can be identified by a
metadata field Vcs - * which can be viewed with the apt -cache showsrc <package-name>command.

12.2 Salsa account setup

After signing up for an account on Salsa, make sure that the following pages have the same e-mail
address and GPG keys you have configured to be used with Debian, as well as your SSH key:

« https://salsa.debian.org/-/profile/emails
« https://salsa.debian.org/-/user_settings/gpg_keys

« https://salsa.debian.org/-/user_settings/ssh_keys

12.3 Salsa CI service

Salsa runs Salsa ClI service as an instance of GitLab CI for «Pazgen 11.4».
For every «git push» instances, tests which mimic tests run on the official Debian package service
can be run by setting Salsa CI configuration file «Pa3gen 6.13» as:

include:
- https://salsa.debian.org/salsa-ci-team/pipeline/raw/master/recipes/debian.yml

Customizations here

12.4 Branch names

The Git repository for the Debian packaging should have at least 2 branches:
« debian-branch to hold the current Debian packaging head.

- old style: master (or debian, main, ...)
— DEP-14 style: debian/latest

« upstream-branch to hold the upstream releases in the imported form.

- old style: upstream
- DEP-14 style: upstream/latest

In this tutorial, old style branch names are used in examples for simplicity.

3ameyaHune

% This upstream-branch may need to be created using the tarball released by the
upstream independent of the upstream Git repository since it tends to contain

automatically generated files.

The upstream Git repository content can co-exit in the local Git repository used for the Debian packaging
by adding its copy. E.g.:

[debhello] $ git remote add upstreamvcs <url-upstream-git-repo>
[debhello] $ git fetch upstreamvcs master:upstream-master

This allows easy cherry-picking from the upstream Git repository for bug fixes.

1Use of git.debian.org or alioth.debian.org are deprecated now.

74

https://salsa.debian.org
https://salsa.debian.org
https://salsa.debian.org
https://salsa.debian.org/-/profile/emails
https://salsa.debian.org/-/user_settings/gpg_keys
https://salsa.debian.org/-/user_settings/ssh_keys
https://salsa.debian.org
https://salsa.debian.org/salsa-ci-team/pipeline
https://docs.gitlab.com/ee/ci/
https://salsa.debian.org/salsa-ci-team/pipeline
https://dep-team.pages.debian.net/deps/dep14/
https://dep-team.pages.debian.net/deps/dep14/

[7IABA 12. PACKAGING WITH GIT 12.5. PATCH UNAPPLIED GIT REPOSITORY

12.5 Patch unapplied Git repository

The patch unapplied Git repository can be summarized as:
¢ This seems to be the traditional practice as of 2024.

« The source tree matches extracted contents by «dpkg-source -x --skip-patches» of the Debian
source package.
- The upstream source is recorded in the Git repository without changes.
- The maintainer modified contents are confined within the debian/* directory.
- Maintainer changes to the upstream source are recorded in debian/patches/* files for the
Debian source format «3.0 (quilt)».

 This repository style is useful for all variants of traditional workflows and gbp based workflow:

«Pazgen 5.7» (no patch)
«Pa3gen 5.10»

* debian/patches/* files can also be generated using «git format-patch», «git diff», or
«gitk» from git commits in the through-away maintainer modification branch or from the
upstream unreleased commits.

«Pa3gen 5.11» including the last «dquilt pop -a» step
«Pa3gen 12.6»

« Use helper scripts such as dquilt(1) and gbp-pq(1) to manage data in debian/patches/* files.
- Add .pc line to the ~l.gitignore file if dquilt is used.
* Use «dpkg-source -b» to build the Debian source package.

« Use dput(1) to upload the Debian source package.

12.6 Patch by «gbp-pq» approach

For «Pasgen 12.5», you can generate debian/patches/* files using the gbp-pq(1) command from git
commits in the through-away patch-queue branch.

Unlike dquilt which offers similar functionality as seen «Pa3gen 5.11» and «Pa3nen 10.5», gbp-pq
doesn’t use .pcl* files to track patch state, but instead gbp-pq utilizes temporary branches in git.

12.7 Manage patch queue with gbp-pq

You can add, drop, and refresh debian/patches/* files with gbp-pq to manage patch queue.
If the package is managed in «Pa3gen 12.5» using the git-buildpackage package, you can revise
the upstream source to fix bug as the maintainer and release a new Debian revision using gbp pq.

« Add a new patch recording the upstream source modification on the file buggy._file as:

[debhello] $ git checkout master

[debhello] $ gbp pg import

gbp:info: ... imported on 'patch-queue/master
[debhello] $ vim buggy_file

[debhello] $ git add buggy_file

[debhello] $ git commit

[debhello] $ gbp pg export

gbp:info: On 'patch-queue/master', switching to 'master'

gbp:info: Generating patches from git (master..patch-queue/master)
[debhello] $ git add debian/patches/*

[debhello] $ dch -i

[debhello] $ git commit -a -m "Closes: #<bug_number>"

[debhello] $ git tag debian/<version>-<rev>

75

[7IABA 12. PACKAGING WITH GIT 12.8. GBP IMPORT-DSCS --DEBSNAP

« Drop (== disable) an existing patch

- Comment out pertinent line in debian/patches/series
- Erase the patch itself (optional)

« Refresh debian/patches/* files to make «dpkg-source -b» work as expected after updating a

Debian package to the new upstream release.

[debhello] $ git checkout master

[debhello] $ gbp pq --force import # ensure patch-queue/master branch
gbp:info: ... imported on 'patch-queue/master

[debhello] $ git checkout master

[debhello] $ gbp import-orig --pristine-tar --uscan

tar.xz

[debhello] $ gbp pq rebase
resolve conflicts and commit to patch-queue/master branch

[debhello] $ gbp pg export
gbp:info: On 'patch-queue/master', switching to 'master'
gbp:info: Generating patches from git (master..patch-queue/master)
[debhello] $ git add debian/patches
[debhello] $ git commit -m "Update patches"
[debhello] $ dch -v <newversion>-1
[debhello] $ git commit -a -m "release <newversion>-1"
[debhello] $ git tag debian/<newversion>-1

12.8 gbp import-dscs --debsnap

For Debian source packages named «<source-package>» recorded in the snapshot.debian.org archive,
an initial git repository managed in «Pa3gen 12.5» with all of the Debian version history can be generated
as follows.

[debhello] $ gbp import-dscs --debsnap --pristine-tar <source-package>

12.9 Note on gbp

The gbp command is provided by the git-buildpackage package.

L]

This command is designed to manage contents of «Pa3sgen 12.5» efficiently.
Use «gbp import-orig» to import the new upstream tar to the git repository.

- The «--pristine-tar» option for the «git import-orig» command enables storing the upstream
tarball in the same git repository.

- The «--uscan» option as the last argument of the «gbp import-orig» command enables
downloading and committing the new upstream tarball into the git repository.

Use «gbp import-dsc» to import the previous Debian source package to the git repository.
Use «gbp dchx» to generate the Debian changelog from the git commit messages.
Use «gbp buildpackage» to build the Debian binary package from the git repository.

- The shuild package can be used as its clean chroot build backend either by configuration or
adding «--git-builder="sbuild -A -s --source-only-changes -v -d unstable’»

Use «gbp pull» to update the debian, upstream and pristine-tar branches safely from the remote
repository.

Use «gbp pg» to manage quilt patches without using dquilt command.

76

http://snapshot.debian.org/

[7IABA 12. PACKAGING WITH GIT 12.10. THE GIT REPOSITORY BROWSER

* Use «gbp clone REPOSITORY_URL» to clone and set up tracking branches for debian, upstream
and pristine-tar.

Package history management with the git-buildpackage package is becoming the standard practice
for many Debian maintainers. See more at:

» «Cb6opka naketoB Debian ¢ nomoubto git-buildpackage»
* «4 tips to maintain a “3.0 (quilt)” Debian source package in a VCS»

* The systemd packaging practice documentation on «Building from source»

The workflow mentioned in dgit-maint-gbp(7) which enables to use this gbp with dgit

12.10 The Git repository browser

The gitk command in the gitk package displays changes in a repository or a selected set of commits.
This includes visualizing the commit graph, showing information related to each commit, and the files in
the trees of each revision.

This gitk command also provides very intuitive Ul to many cumbersome operations of the «git»
command such as «git checkout ...», «git reset* ...», «git diff ...», etc..

12.11 Git commit history organization

When your local Git commit history becomes intertwined, you need to organize it before pushing it out
to the public.

The most simple organization process is to squash all changes to a single commit using «git rebase
-i» interactively.

But this may create a huge commit with files such as auto-generated files not intended to be committed.
You can drop such files in the commit using «git rm some_file» and «git commit --amend>. This may
be quite cumbersome.

This cumbersome drop process can be eased by using the «git-ime» command in the imediff
package. It automatically splits a single commit with many files into multiple commits involving only a
single file changes. Now you can drop such files using «git rebase -i» interactively.

Moackaska

commits of line changes using imediff interactively. Invoking this with the --auto

. The «git-ime» operating on a single file change commit splits it into multiple
option will automate this split commit operation. See git-ime(1) and imediff(1).

12.12 Quasi-native Debian packaging

The quasi-native packaging scheme packages a source without the real upstream tarball using the non-
native package format.

Moackaska

Some people promote this quasi-native packaging scheme even for programs
ISy written only for Debian since it helps to ease communication with the downstream

distros such as Ubuntu for bug fixes etc.

This quasi-native packaging scheme involves 2 preparation steps:

77

https://honk.sigxcpu.org/projects/git-buildpackage/manual-html/gbp.html
https://raphaelhertzog.com/2010/11/18/4-tips-to-maintain-a-3ZZZZ-0-quilt-debian-source-package-in-a-vcs/
https://salsa.debian.org/systemd-team/systemd/-/blob/debian/master/debian/README.source

[7IABA 12. PACKAGING WITH GIT 12.13. PATCH APPLIED GIT REPOSITORY

« Organize its source tree almost like native Debian package (see «Pa3gen 6.4») with debian/* files
with a few exceptions:
- Make debian/sourcelformat to contain «3.0 (quilt)» instead of «3.0 (native)» .
- Make debian/changelog to contain version-revision instead of version .

» Generate missing upstream tarball preferably without debian/* files.

— For Debian source format «3.0 (quilt)», removal of files under debian/ directory is an optional
action.

The rest is the same as the non-native packaging workflow as written in «Pasgen 6.1».
Although this can be done in many ways, you can use the Git repository and «git deborig» as:

[~]1 $ cd /path/to/debhello
[debhello] $ dch -r
. set its <version>-<revision>, e.g., 1.0-1

[debhello] $ git tag -s debian/1.0-1
[debhello] $ git rm -rf debian
[debhello] $ git tag -s upstream/1.0
[debhello] $ git commit -m upstream/1.0
[debhello] $ git reset --hard HEADA
[debhello] $ git deborig

[debhello] $ sbuild

12.13 Patch applied Git repository

3amMeyaHue

The focus of this introductory tutorial «Guide for Debian Maintainers» isn't the
% patch applied Git repository which is rather a new trend initiated by the proponent

of the dgit command. So minimal explanation is given here.

The patch applied Git repository can be summarized as:
« The source tree matches extracted contents by «dpkg-source -x» of the Debian source package.

- The source tree is buildable and the same as what NMU maintainers see.

— The source is recorded in the Git repository with maintainer changes including the debian/
directory.

- Maintainer changes to the upstream source are also recorded in debian/patches/* files for
the Debian source format «3.0 (quilt)».

12.14 Note on dgit

The dgit command is provided by the dgit package.
« This command enables to access the Debian package repository as if it were a git remote repository.
¢ This command offers tools to manage Debian packaging activities mainly using «Pazgen 12.13».
- No more convoluted operations to manage patch files in the debian/patches directory.
* Use «dgit build-source» or «dgit sbuild>» to build the Debian source-only or source+binary package.

» Use «dgit push-source» or «dgit push-build» for uploading the Debian source-only or source+binary
package via the dgit server.

78

https://www.debian.org/doc/manuals/debmake-doc/

[7IABA 12. PACKAGING WITH GIT 12.14. NOTE ON DGIT

« Use git-deborig(1) to produce Debian package.orig.tar.xz from the upstream version in debian/changelog.

Moackaska

The dgit server is browsable at https://browse.dgit.debian.org/ site.

3amMeyaHue

In order to keep the working tree dgit-compatible, delete debian/sourcellocal-
options and debian/sourcel/local-patch-header if they exist.

Hints for workflow styles:
« dgit-maint-merge(7) workflow.
— Use this for the Debian non-native package without granular topic patches recorded in the
Debian source package.

* Good enough for packages only with trivial modifications to the upstream.
* Only choice for packages with intertwined modification histories to the upstream.

- Add auto-commit and single-debian-patch lines in the debian/sourceloptions file
* No granular topic patches recorded inside of the Debian source package.

- Use «git checkout upstream; git pull» to pull the new upstream commit and use «git checkout
master ; git merge <new-version-tag>» to merge it to the master branch.

- See «Pa3gen 5.12» for example.
« dgit-maint-debrebase(7) workflow.

— Use this for the Debian non-native package with granular topic patches recorded in the Debian
source package.

- Usethe git-debrebase(1) command to maintain series of Debian changes to upstream source.
« dgit-maint-native(7) workflow,

— Use this for the Debian native package in the Debian Git repository. (No maintainer changes)
« dgit-maint-gbp(7) workflow

— Use this for the Debian non-native package using source format «3.0 (quilt)» with its Debian
Git repository which had been using gbp-buildpackage(1) with «Pa3zgen 12.5».

This author likes this new dgit command and just started to use it with dgit-maint-merge(7) and
dgit-maint-native(7) workflows. Thus, topics around dgit are beyond this tutorial document to cover in
depth. Please start reading the latest relevant manpages and upstream resources:

* «dgit: use the Debian archive as a git remote (2015)»

» «tag2upload (2023)»

79

https://browse.dgit.debian.org/
https://www.chiark.greenend.org.uk/~ijackson/2015/debconf-dgit-talk/slides.pdf
https://wiki.debian.org/DebianEvents/gb/2023/MiniDebConfCambridge/Jackson?action=AttachFile&do=get&target=slides.pdf

FnaBa 13

NMone3Hble coBeThbl

Please also read insightful pages linked from «Notes on Debian» by Russ Allbery (long time Debian
developer) which have best practices for advanced packaging topics.

13.1 Coopka c ucnonbsosaHmem koguposku UTF-8

Jlokanbto No ymonyaHuo B C60po4HOM OKpyxeHun siensietcs C.

HekoTopble nporpamMmsl, Takme kak oyHkUM read n3 Python3, U3amMeHsl0T CBOE NoBefeHne B 3aBUCU-
MOCTM OT TEKYLLER nokanu.

Adding the following code to the debian/rules file ensures building the program under the C.UTF-8
locale.

LC_ALL := C.UTF-8
export LC_ALL

13.2 [lpeoGpasoBaHue B KogupoBKy UTF-8
If upstream documents are encoded in old encoding schemes, converting them to UTF-8 is a good idea.
Use the iconv command in the libc-bin package to convert the encoding of plain text files.

[debhello] $ iconv -f latinl -t utf8 foo_in.txt > foo_out.txt

Mcnonb3yinte w3m(1) ans npeobpasoBaHnss HTML-halinoB B 06bl4HbIE TEKCTOBbLIE daifibl B KOAU-
poske UTF-8. MNpwu BbINoNHEHUN Npeobpa3oBaHus ybegutech, UTo y Bac Ucnonblyercs nokasis UTF-8.

[debhello] $ LC_ALL=C.UTF-8 w3m -o display_charset=UTF-8 \
-cols 70 -dump -no-graph -T text/html \
< foo_in.html > foo_out.txt

3anycTtute 3Tn cueHapun B uenu override_dh_* caiina debian/rules.

13.3 Hints for Debugging

Koraa Bbl cTasikMBaeTech ¢ Npo6ieMamMu c6opky UM 4aMnomM NaMsiTh CO34aHHbIX ABOVNYHBIX MPOrpamm,
BaM HEOGXOAUMO Pa3peLUMTb UX CAMOCTOSATE/bHO. DTO HA3bIBAETCS OT/IAAKOMN.

3T0 CAMLLKOM OBLUMPHAs TeEMa, YTOObI 06CYXAaTh €€ B HACTOSILLEM PYKOBOACTBE. [103TOMY N03BOSIb-
Te NPOCTO NPUBECTY HECKOSILKO CCbISTOK 1 MOJIE3HbIX COBETOB N0 UCMNO/Mb30BAHUI TUMNYHBIX UHCTPYMEH-
TOB OT/IAKM.

» Wikipedia: «core dump»

- «man core»
- Update the «/etc/security/limits.conf» file to include the following:

80

https://www.eyrie.org/~eagle/notes/debian/
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Core_dump

[7IABA 13. OJIE3HBIE COBETHI 13.3. HINTS FOR DEBUGGING

* soft core unlimited

- «ulimit -c unlimited» in ~/.bashrc
- «ulimit -a» to check
— Press Ctrl-\ or «kill -ABRT 'PID’» to make a core dump file

« gdb — otnagumk GNU

- «info gdb»
— «Debugging with GDB» in lusr/sharel/doc/gdb-doc/html/gdbl/index.html

* strace — TpaccupoBKa CUCTEMHbIX BbI30BOB N CUTHaU10B

- Wcnonbayiite cueHapwii strace-graph us katanora lusrishareldoc/stracelexamples/, 4to6bl
UMeTb YA0GHYI0 BU3yasM3aumio B Buae Aepesa

- «man strace»
* Itrace - TpaccupoBka 616IMOTEYHBIX BbI30BOB
- «man ltrace»
* «sh -n script.sh» - Syntax check of a Shell script
» «sh -x script.sh» - Trace a Shell script
¢ «python3 -m py_compile script.py» - Syntax check of a Python script
* «python3 -mtrace --trace script.py» - Trace a Python script
e «perl -1 ../libpath -c script.pl» - Syntax check of a Perl script
« «perl -d:Trace script.pl» - Trace a Perl script

- Install the libterm-readline-gnu-perl package or its equivalent to add input line editing capability
with history support.

* Isof — BbIBOA crMcKa (haiinioB, OTKPbITLIX NpoLieccamu

- «man Isof»

Mopackaska

The script command records console outputs.

Moackaska

The screen and tmux commands used with the ssh command offer secure and

robust remote connection terminals.

lNoackaska

A Python- and Shell-like REPL (=READ + EVAL + PRINT + LOOP) environment
ISy for Perl is offered by the reply command from the libreply-perl (new) package

and the re.pl command from the libdevel-repl-perl (old) package.

81

[7IABA 13. OJIE3HBIE COBETHI 13.3. HINTS FOR DEBUGGING

Moackaska

The rlwrap and rife commands add input line editing capability with history
support to any interactive commands. E.g. «rlwrap dash -i'» .

82

naBa 14

Tool usages

Here are some notable tools around Debian packaging.

3ameyaHune

strongly encouraged to search for and read all relevant documentation associated

@ The descriptions in this section are intentionally brief. Prospective maintainers are
with these commands.

3amevyaHue

Examples here use the gz-compression. The xz-compression may be used

instead.

14.1 debdiff

MOXHO cpaBHMBaTb cogepxmmMoe dhaiisioB B ABYX nakeTax Debian ¢ ncxogHbIM KO4OM C MOMOLLbHO KO-
MaHapb! debdiff.

[base_dir] $ debdiff old-package.dsc new-package.dsc

Takxe MOXHO CpaBHMBaTb CNMCKM (haitnoB B ABYX Habopax ABOMYHbLIX NakeToB Debian ¢ nomoLbo
komaHgpb! debdiff.

[base_dir] $ debdiff old-package.changes new-package.changes

OT0 NoNE3HO A/19 ONpPeAeNeHns U3MEHEHNI B NakeTax C MCXOA4HLIM KOAOM U 418 NPOBEPKU Ha npes-
MET HeYastHHbIX U3MEHEHWI, MPUBHECEHHbIX NPV 0OHOBIEHMMN ABONYHbLIX NAKETOB, TAKNX KakK HEMpeaHa-
MEepEeHHOEe OLNBOYHOE pasMeLleHne nan yaaneHme daisios.

Debian now enforces the source-only upload when developing packages. So there may be 2 different
*.changes files:

« package_version-revision_source.changes for the normal source-only upload

» package_version-revision_arch.changes for the source+binary upload

14.2 dget

MoXHO ckavatb Habop hainne ana naketa Debian ¢ nCxogHbIM KOAOM C MOMOLLbIO KOMaHabl dget.

[base_dir] $ dget https://www.example.org/path/to/package_version-rev.dsc

83

[7IABA 14. TOOL USAGES 14.3. MK-ORIGTARGZ

14.3 mk-origtargz

You can make the upstream tarball ..[foo-newversion.tar.[xg]z accessible from the Debian source tree
as ..Ifoo_newversion.orig.tar.[xg]z. This command is useful for renaming and symlinking the upstream
tarball to the expected Debian naming convention.

14.4 origtargz

You can fetch the pre-existing orig tarball of a Debian package from various sources, and unpack it with
origtargz command.
This is basically for -2, -3, ... revisions.

3ameyvaHue
When the upstream tarball is missing, debmake automatically produces a
required tarball. This is a convenient feature and good enough for making a
private Debian package. But when making a Debian package for the official
Debian repository, you must use exactly the same upstream tarball as the -1
revision. For such case, origtargz should be used.

14.5 git deborig

If the upstream project is hosted in a Git repository without an official tarball release, you can generate
its orig tarball from the git repository for use by the Debian source package. Execute «git deborig» from
the root of the checked-out source tree.

This is basically for -1 revisions.

14.6 dpkg-source -b

The «dpkg-source -b» command packs the upstream source tree into the Debian source package.

It expects a series of patches in the debian/patches/ directory and their application sequence in
debian/patches/series.

It is compatible with dquilt (see «Pa3aen 4.4») operations and understands the patch application
status from the existence of .pclapplied-patches.

The dpkg-buildpackage command invokes «dpkg-source -b».

14.7 dpkg-source -x

The «dpkg-source -x» command extracts the source tree and applies the patches in the debian/patches/
directory using the sequence specified in debian/patchesi/series to the upstream source tree. It also
adds .pclapplied-patches. (See «Pa3nen 12.13».)

The «dpkg-source -x --skip-patches» command extracts source tree only. It doesn’t add .pclapplied-
patches. (See «Pazgen 12.5».)

Both extracted source trees are ready for building Debian binary packages with dpkg-buildpackage,
dbuild, sbuild, etc..

14.8 debc

Co3aaHHble NaKeTbl CrieAyeTcs YCTAHOBUTL C MOMOLLbIO KOMaHabl debc a5 ux nokanbHoO NpoBepku.

[base_dir] $ debc package_version-rev_arch.changes

84

[7IABA 14. TOOL USAGES 14.9. BTS

14.9 bts

After uploading the package, you will receive bug reports. It is an important duty of a package maintainer
to manage these bugs properly, as described in «5.8. Handling bugs» of the «Debian Developer’'s
Reference».

The bts command is a handy tool to manage bugs on the «Debian Bug Tracking System>.

[~] $ bts severity 123123 wishlist , tags -1 pending

14.10 dpkg-depcheck

You can use dpkg-depcheck(1) to obtain a good first approximation to the Build-Depends line needed
by a Debian package.

[foo-1.0] $ dpkg-depcheck -b debian/rules build

85

https://www.debian.org/doc/manuals/developers-reference/pkgs.html#bug-handling
https://www.debian.org/Bugs/

naBa 15

JononHutenbHbIe NPUMEpPbI

There is an old Latin saying: «fabricando fit faber» («practice makes perfect»).

It is highly recommended to practice and experiment with all the steps of Debian packaging with
simple packages. This chapter provides you with many upstream cases for your practice.

This should also serve as introductory examples for many programming topics.

« Programming in the POSIX shell, Python3, and C.
« Method to create a desktop GUI program launcher with icon graphics.
« Conversion of a command from CLI to GUI.

« Conversion of a program to use gettext for internationalization and localization: POSIX shell and
C sources.

» Overview of many build systems: Makefile, Python, Autotools, and CMake.
Please note that Debian takes a few things seriously:

e CBob6ogHoe MO

 Stability and security of OS

* YHuBepcasibHas onepauyoHHas cucTeMa peannsyeTcs Yepes

— CB0OOOAHbI BbIOOP NCTOUHMKOB M UCXOAHBLIX KOAOB OCHOBHOW BETKM pa3paboTku,
— CBOGOAHbI BbIGOP apxuTekTyp LiM, a Takke
— cB06OOAHbIV BbIOOP A3blKa MNONb30BaTE/IbCKOr0 UHTEpPeiica.
3HaKOMCTBO C TUMMYHBLIM NPUMEPOM paboThl Ha NakeToM, MpeAcTaB/eHHbIM B «[1aBa 5», iBNsieTcs
npeaBapuTeNbHbIM YCIOBMEM A1 UTEHUS JaHHOM rnaBbl.

Some details are intentionally left vague in the following sections. Please try to read the pertinent
documentation and practice yourself to find them out.

Moackaska

The best source of a packaging example is the current Debian archive itself.
Please use the «Debian Code Search» service to find pertinent examples.

15.1 BbI6GOpOYHOE NpUMEHEeHUeE WabI0HOB

Here is an example of creating a simple Debian package from a zero-content source in an empty directory.
This is a good way to obtain all the template files without cluttering the upstream source tree you are
working on.
JonycTtum, nycteim Katasiorom 6yaet debhello-0.1.

86

https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Internationalization_and_localization
https://codesearch.debian.net/

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.1. BBIBOPOYHOE MNPUMEHEHWVE ...

[base_dir] $ mkdir debhello-0.1
[base_dir] $ tree

+-- debhello-0.1
2 directories, 0 files

Let’s generate the maximum amount of template files.
Let’s also use the «-p debhello -t -x3 -u 0.1 -r 1» options to create the missing upstream tarball with
optional -x3, and -t options.

[base_dir] $ cd debhello-0.1
[debhello-0.1] $ debmake -p debhello -x3 -t -T -u 0.1 -r 1
I: debmake (version: 5.1.2)

MpoBepVM cO3aaHHbIe LWabMoHHbIe halisbl.

[debhello-0.1] $ cd
[base_dir] $ tree

+-- debhello-0.1
+-- debian

+-- README.Debian
+-- README.source
+-- bug-control.ex
+-- bug-presubj.ex
+-- bug-script.ex
+-- changelog
+-- clean
+-- conffiles.ex
+-- control
+-- copyright
+-- cron.d.ex
+-- cron.daily.ex
+-- cron.hourly.ex
+-- cron.monthly.ex
+-- cron.weekly.ex
+-- default.ex

+-- dirs
+-- doc-base.ex
+-- docs

+-- emacsen-remove.ex
+-- emacsen-startup.ex
+-- examples

+-- gbp.conf

+-- info.ex

+-- install

+-- links

+-- lintian-overrides.ex
+-- maintscript.ex

+-- manpage.l.ex

+-- manpage.asciidoc.ex
+-- manpage.md.ex

+-- manpage.sgml.ex

+-- manpage.xml.ex

+-- manpages

+-- patches

| +-- series

+-- postinst.ex

+-- postrm.ex

+-- preinst.ex

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| +-- emacsen-install.ex
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| +-- prerm.ex

87

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.2. BE3 MAKEFILE (KOMAHAHAS ...

| +-- rules
| +-- salsa-ci.yml

| +-- service.ex

| +-- source

| | +-- format

| | +-- lintian-overrides.ex

| | +-- options.ex

| | +-- patch-header.ex

| +-- tests

| | +-- control

| +-- tmpfile.ex

| +-- upstream

| | +-- metadata

| +-- watch

+-- debhello-0.1.tar.xz

+-- debhello_0.1.orig.tar.xz -> debhello-0.1.tar.xz

7 directories, 53 files

Tenepb Bbl MOXETe CKONMpoBaTh /11060 13 co3AaHHbIX B kKaTanore debhello-0.1/debian/ wa61oHHbIX
(paiinioB B Ball NakeT, NPy HEO6XOAUMOCTH UX NEPEMMEHOBAB.

15.2 bBe3 Makefile (komaHgHaa o6010uKa, UHTEePdEeNnc KOMaH4HOW
0060/104KN)

Hwxe npuBognTCs NpMMep co3gaHnst NpocToro naketa Debian n3 nporpammbl ¢ MHTEPGIECOM KOMaHAHO
0060/104KKN, HAMMCaHHOM A1 KOMaHAHOW 060104k POSIX 1 He nmeroLLeli cuctembl COOPKU.

Let's assume this upstream tarball to be debhello-0.2.tar.xz.

DTOT TN NCXOLHOTO KOAA He UMEEeT CPeACTB aBToMaTm3aumm, 1 galisibl LO/MKHbI ObiTb YCTaHOB/EHbI
BPYUHY!O.

For example:

[base_dir] $ tar --xz -xmf debhello-0.2.tar.xz
[base_dir] $ cd debhello-0.2
[debhello-0.2] $ sudo cp scripts/hello /bin/hello

Let's get this source as tar file from a remote site and make it the Debian package.
Download debhello-0.2.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-0.2.tar.xz

[base_dir] $ tar --xz -xmf debhello-0.2.tar.xz
[base_dir] $ tree

+-- debhello-0.2
+-- README.md
+-- data
[+-- hello.desktop
[+-- hello.png

I
I
I
I
I
| [+-- hello.1
I
I
+

+-- man
+-- scripts
+-- hello
-- debhello-0.2.tar.xz

5 directories, 6 files

WTak, cueHapuin komaHgHo 060104k POSIX hello sBnisieTca oueHb NPOCTbIM.
hello (v=0.2)

[base_dir] $ cat debhello-0.2/scripts/hello
#!/bin/sh -e

88

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.2. BE3 MAKEFILE (KOMAHAHAS ...

echo "Hello from the shell!"

echo mnn

echo -n "Type Enter to exit this program: "
read X

Here, hello.desktop supports the «Desktop Entry Specification».
hello.desktop (v=0.2)

[base_dir] $ cat debhello-0.2/data/hello.desktop
[Desktop Entry]
Name=Hello
Name[fr]=Bonjour
Comment=Greetings
Comment[fr]=Salutations
Type=Application
Keywords=hello
Exec=hello
Terminal=true
Icon=hello.png
Categories=Utility;

Here, hello.png is the icon graphics file.
Let's package this with the debmake command. Here, the -b’:sh’ option is used to specify that the
generated binary package is a shell script.

[base_dir] $ cd debhello-0.2
[debhello-0.2] $ debmake -b':sh' -x1
I: debmake (version: 5.1.2)

: creating debian/copyright by licensecheck.

: creating debian/control from control.py

: creating debian/control by control.py

: creating debian/changelog from extra®_changelog

: creating debian/rules from extra@_rules

: creating debian/source/format from extra@source_format

I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>

I: [debhello-0.2] $ cd

I: Non-native Debian package pkg="debhello", ver="0.2", rev="1" method="dir_d...
I: already in the package-version form: "debhello-0.2"

I: [base_dir] $ ln -sf debhello-0.2.tar.xz debhello_0.2.o0rig.tar.xz

I: [base_dir] $ cd debhello-0.2

I: parsing option -b ":sh"

I: binary package=debhello Type=script / Arch=all M-A=foreign

I: build_type = Unknown

I: ext_type =1 1 files

I: ext_type = desktop 1 files

I: ext_type = md 1 files

I: creating debian/* files with "-x 1" option

I: [debhello-0.2] $ licensecheck --recursive --copyright --deb-machine . > d...
I

I

I

I

I

I

MpoBepuM co3gaHHble WabIoHHbIE haisbl.
JepeBo NCXoA4HOro Koga nocsie npocToro BbinosiHeHus debmake. (v=0.2)

[debhello-0.2] $ cd
[base_dir] $ tree

+-- debhello-0.2

| +-- README.md

| +-- data

| [+-- hello.desktop
| [+-- hello.png
| +-- debian

| | +-- README.Debian
| | +-- README.source
| | +-- changelog

89

https://www.freedesktop.org/wiki/Specifications/desktop-entry-spec/

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.2. BE3 MAKEFILE (KOMAHAHAS ...

+-- clean
+-- control
+-- copyright

+-- dirs

+-- docs

+-- examples
+-- gbp.conf
+-- install
+-- links

|
I
|
I
I
|
I
I
[+-- manpages

[+-- patches

[| +-- series

[+-- rules

[+-- salsa-ci.yml

[+-- source

[| +-- format

[+-- tests

[| +-- control

[+-- upstream

[| +-- metadata

[+-- watch

+-- man

[+-- hello.1

+-- scripts

| +-- hello

+-- debhello-0.2.tar.xz

+-- debhello_0.2.orig.tar.xz -> debhello-0.2.tar.xz

10 directories, 27 files

debian/rules (wa6noHHbI haiin, v=0.2):

[base_dir] $ cd debhello-0.2

[debhello-0.2] $ cat debian/rules

#!/usr/bin/make -f

You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)

This is an autogenerated template for debian/rules.

#

Output every command that modifies files on the build system.
#export DH_VERBOSE = 1

Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.

These are rarely used code. (START)
The following include for *.mk magically sets miscellaneous

variables while honoring existing values of pertinent
environment variables:

H o HH W HHH

Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk

Vendor-related variables such as DEB_VENDOR:

#include /usr/share/dpkg/vendor .mk

Package-related variables such as DEB_DISTRIBUTION

#include /usr/share/dpkg/pkg-info.mk

#

You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)

#

These are rarely used code. (END)

#

main packaging script based on post dh7 syntax

90

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.2. BE3 MAKEFILE (KOMAHAHAS ...

%
dh $@

debmake generated override targets

Mo cyTu, aTo cTaHAapTHbIA thaiin debian/rules, ncnonbaytowmii komaHgy dh. Mockonbky 3TO NakeTt
CO cueHapueM, 3ToT WabnoHHbIl haiin debian/rules He nmeeT cogepXnMoro, CBA3aHHOTO € dh/iarom
cbopKu.

debian/control (wa6noHHbI haiin, v=0.2):

[debhello-0.2] $ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.3
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/<project_site>

Package: debhello

Section: unknown

Architecture: all

Multi-Arch: foreign

Depends:

${misc:Depends},

Description: auto-generated package by debmake

This Debian binary package was auto-generated by the
debmake (1) command provided by the debmake package.

===== This comes from the unmodified template file =====

Please edit this template file (debian/control) and other package files
(debian/*) to make them meet all the requirements of the Debian Policy
before uploading this package to the Debian archive.
See
* https://www.debian.org/doc/manuals/developers-reference/best-pkging-pract...
* https://www.debian.org/doc/manuals/debmake-doc/ch@5.en.html#control

The synopsis description at the top should be about 60 characters and
written as a phrase. No extra capital letters or a final period. No
articles b''-b"'' "a", "an", or "the".

The package description for general-purpose applications should be
written for a less technical user. This means that we should avoid
jargon. GNOME or KDE is fine but GTK+ is probably not.

Use the canonical forms of words:
* Use X Window System, X11, or X; not X Windows, X-Windows, or X Window.
* Use GTK+, not GTK or gtk.
* Use GNOME, not Gnome.
* Use PostScript, not Postscript or postscript.

Since this is the shell script package, the debmake command sets «Architecture: all» and «Multi-
Arch: foreign». Also, it sets required substvar parameters as «Depends: ${misc:Depends}». These
are explained in «'naBa 6».

Since this upstream source lacks the upstream Makefile, that functionality needs to be provided by
the maintainer. This upstream source contains only a script file and data files and no C source files;
the build process can be skipped but the install process needs to be implemented. For this case, this
is achieved cleanly by adding the debianl/install and debian/manpages files without complicating the

91

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.2. BE3 MAKEFILE (KOMAHAHAS ...

debian/rules file.
Cpoenaem 3T0T nakeT Debian nyJwe.
debianl/rules (Bepcus conpoBoxgatouiero, v=0.2):

[base_dir] $ cd debhello-0.2

[debhello-0.2] $ vim debian/rules
hack, hack, hack,

[debhello-0.2] $ cat debian/rules

#!/usr/bin/make -f

export DH_VERBOSE = 1

%
dh $@

debian/control (Bepcusa conposoxaatouiero, v=0.2):

[debhello-0.2] $ vim debian/control
hack, hack, hack,

[debhello-0.2] $ cat debian/control
Source: debhello
Section: devel
Priority: optional

Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:

debhelper-compat (= 13),
Standards-Version: 4.7.3

Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello

Architecture: all

Multi-Arch: foreign

Depends:

${misc:Depends},

Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

BHUMaHMe

® If you leave «Section: unknown» in the template debian/control file unchanged,
the lintian error may cause a build failure.

debianlinstall (Bepcus conpoBoxaatowero, v=0.2):

[debhello-0.2] $ vim debian/install

hack, hack, hack,
[debhello-0.2] $ cat debian/install
data/hello.desktop usr/share/applications
data/hello.png usr/share/pixmaps
scripts/hello usr/bin

debian/manpages (Bepcusa conposoxgatouiero, v=0.2):

$ vim debian/manpages

hack, hack, hack,
[debhello-0.2] $ cat debian/manpages
man/hello.1

B katanore debian/ nvetotcs un gpyrve wabnoHHble goaiinbl. Vx Takke cnegyet 06HOBUTD.
LLla6noHHbIe haiinbl B Katanore debian/. (v=0.2):

92

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.2. BE3 MAKEFILE (KOMAHAHAS ...

[debhello-0.2] $ rm -f debian/clean debian/dirs debian/links
[debhello-0.2] $ rm -f debian/README.source debian/source/*.ex
[debhello-0.2] $ rm -rf debian/patches

[debhello-0.2] $ tree -F debian

debian/

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- docs
+-- examples
+-- gbp.conf

+-- install

+-- manpages

+-- rules*

+-- salsa-ci.yml
+-- source/

| +-- format
+-- tests/

| +-- control
+-- upstream/

| +-- metadata
+-- watch

4 directories, 15 files

B gaHHOM gepeBe MCXO4HOTO Kofa Bbl MOXETE CO3faTb HepogHoi nakeT Debian ¢ momoubo Ko-
maHAb! debuild (nnn eé akBrBaneHTa). BbiBOA, 3TO KOMaHAbI O4EHb NOAPOGEH, B HEM OOBACHSAETCS, HTO
NPOUCXOANT, U BbIMIALUT 3TO Cneayowmum obpasom.

[base_dir] $ cd debhello-0.2
[debhello-0.2] $ debuild
dpkg-buildpackage -us -uc -ui -i
dpkg-buildpackage: info: source package debhello
dpkg-buildpackage: info: source version 0.2-1
dpkg-buildpackage: info: source distribution unstable
dpkg-buildpackage: info: source changed by Osamu Aoki <osamu@debian.org>
dpkg-source -i --before-build .
dpkg-buildpackage: info: host architecture amdé64
debian/rules clean
dh clean

dh_clean

rm -f debian/debhelper-build-stamp

debian/rules binary
dh binary
dh_update_autotools_config
dh_autoreconf
create-stamp debian/debhelper-build-stamp
dh_prep
rm -f -- debian/debhello.substvars
rm -fr -- debian/.debhelper/generated/debhello/ debian/debhello/ debi...
dh_auto_install --destdir=debian/debhello/

Finished running lintian.

MpoBepuM pe3ynsTaTt COopKM.
KomaHngoii debuild 66111 co3gaHbl cnegytouwme daiinsi debhello Bepcun 0.2:

[debhello-0.2] $ cd
[base_dir] $ tree -FL 1
v

+-- debhello-0.2/

+-- debhello-0.2.tar.xz

93

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.2. BE3 MAKEFILE (KOMAHAHAS ...

+-- debhello_0.
+-- debhello_0.
+-- debhello_0.

2-1.debian.tar.xz
2-
2-
+-- debhello_0.2-
2-
2-
2.

1.
1.dsc
1_all.deb
1_amd64.build
+-- debhello_0.2-1_
+-- debhello_0.2-1_
+-- debhello_0.

amd64.buildinfo
amdé4.changes
orig.tar.xz -> debhello-0.2.tar.xz

2 directories, 8 files
Bbl BUAMTE BCE CO3AaHHble dhaitnbl.
* The debhello_0.2.orig.tar.xz file is a symlink to the upstream tarball.
* The debhello_0.2-1.debian.tar.xz file contains the maintainer generated contents.
« The debhello_0.2-1.dsc file is the meta data file for the Debian source package.

* The debhello_0.2-1_all.deb file is the Debian binary package.

The debhello_0.2-1_amd64.build file is the build log file.

The debhello_0.2-1_amd64.buildinfo file is the meta data file generated by dpkg-genbuildinfo(1).

The debhello_0.2-1_amdé64.changes file is the meta data file for the Debian binary package.

The debhello_0.2-1.debian.tar.xz file contains the Debian changes to the upstream source as follows.

Cxartoe coaepxumoe apxusa debhello_0.2-1.debian.tar.xz:

[base_dir] $ tar --xz -tf debhello-0.2.tar.xz
debhello-0.2/
debhello-0.2/data/
debhello-0.2/data/hello.desktop
debhello-0.2/data/hello.png
debhello-0.2/man/
debhello-0.2/man/hello.1
debhello-0.2/scripts/
debhello-0.2/scripts/hello
debhello-0.2/README.md
[base_dir] $ tar --xz -tf debhello_0.2-1.debian.tar.xz
debian/

debian/README.Debian
debian/changelog

debian/control

debian/copyright

debian/docs

debian/examples

debian/gbp.conf

debian/install

debian/manpages

debian/rules
debian/salsa-ci.yml
debian/source/
debian/source/format
debian/tests/
debian/tests/control
debian/upstream/
debian/upstream/metadata
debian/watch

The debhello_0.2-1_amd64.deb file contains the files to be installed as follows.
The binary package contents of debhello_0.2-1_all.deb:

[base_dir] $ dpkg -c debhello_0.2-1_all.deb
drwxr-xr-x root/root/
drwxr-xr-x root/root/usr/

94

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.3. MAKEFILE (KOMAHAHAS OBO/JIOHKA, ...

drwxr-xr-x root/root/usr/bin/

-rwxr-xr-x root/root/usr/bin/hello

drwxr-xr-x root/root/usr/share/

drwxr-xr-x root/root/usr/share/applications/

-rw-r--r-- root/root/usr/share/applications/hello.desktop
drwxr-xr-x root/root/usr/share/doc/

drwxr-xr-x root/root/usr/share/doc/debhello/

-rw-r--r-- root/root/usr/share/doc/debhello/README.Debian
-rw-r--r-- root/root/usr/share/doc/debhello/changelog.Debian.gz
-rw-r--r-- root/root/usr/share/doc/debhello/copyright
drwxr-xr-x root/root/usr/share/man/

drwxr-xr-x root/root/usr/share/man/manl/

-rw-r--r-- root/root/usr/share/man/manl/hello.1.gz
drwxr-xr-x root/root/usr/share/pixmaps/

-rw-r--r-- root/root/usr/share/pixmaps/hello.png

Here is the generated dependency list of debhello_0.2-1_all.deb.
The generated dependency list of debhello_0.2-1_all.deb:

[debhello-0.2] $ dpkg -f debhello_0.2-1_all.deb pre-depends \
depends recommends conflicts breaks

(No extra dependency packages required since this is a POSIX shell program.)

3ameyaHune

provided one debian/hello.png, editing debianlinstall isn't enough. When
you add debian/hello.png, you need to add a line «include-binaries» to
debian/sourceloptions since PNG is a binary file. See dpkg-source(1).

If you wish to replace upstream provided PNG file data/hello.png with maintainer

/tep200.slog/ vim:set filetype=asciidoc:

15.3 Makefile (komaHgHasa 060no4ka, MHTEepeinc KomaHAHOW 060-
NOYKN)

Hwxe npuBoanTCs NpMMep co3faHnst NpocToro naketa Debian 13 nporpammel ¢ MHTEPGIECOM KOMaHAHO
0060/104KM, HaNUCaHHO AN KoMaHAHOM 0607104k POSIX 1 Mcnonb3ytoLeii B Ka4eCTBE CUCTEMbI COOPKU
Makefile.

Let's assume its upstream tarball to be debhello-1.0.tar.xz.

Mpepnonaraercs, 4TO 3TOT TUM MCXOAHOIO Koga GyaeT yCTaHOB/IEH KaK HECUCTEMHBI dhaiin:

[base_dir] $ tar --xz -xmf debhello-1.0.tar.xz
[base_dir] $ cd debhello-1.0
[debhello-1.0] $ make install

Debian packaging requires changing this «make install» process to install files to the target system
image location instead of the normal location under /usr/local.

MonyunT™M UCXOAHbIA Kog 1 co3gaamm naket Debian.

Download debhello-1.0.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.0.tar.xz

[base_dir] $ tar --xz -xmf debhello-1.0.tar.xz
[base_dir] $ tree

+-- debhello-1.0

| +-- Makefile

| +-- README.md

| +-- data

| [+-- hello.desktop

95

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI

15.3. MAKEFILE (KOMAHAHAS OBO/JIOHKA, ...

I
I
I
I
I
+

[+-- hello.png

+-- man
[+-- hello.1
+-- scripts

+-- hello

-- debhello-1.0.tar.xz

5 directories, 7 files

aen 15.2» and most of the packaging activities are the same.

Makefile (v=1.0)

[base_dir] $ cat debhello-1.0/Makefile
prefix = /usr/local

all:

: # do nothing

install:

install -D scripts/hello \
$(DESTDIR)$(prefix)/bin/hello

install -m 644 -D data/hello.desktop \
$(DESTDIR)S$(prefix)/share/applications/hello.desktop

install -m 644 -D data/hello.png \
$(DESTDIR)$(prefix)/share/pixmaps/hello.png

install -m 644 -D man/hello.1 \
$(DESTDIR)$(prefix)/share/man/mani/hello.1

clean:

: # do nothing

distclean: clean

uninstall:

-rm -f $(DESTDIR)$(prefix)/bin/hello

-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png

-rm -f $(DESTDIR)$(prefix)/share/man/manl/hello.1

.PHONY: all install clean distclean uninstall

generated binary package is a shell script.

[base_dir] $ cd debhello-1.0
[debhello-1.0] $ debmake -b':sh' -x1

I:
: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>

HHHHHHHHHHHHHHKHHH

debmake (version: 5.1.2)

[debhello-1.0] $ cd

[base_dir] $ ln -sf debhello-1.0.tar.xz debhello_1.0.orig.tar.xz
[base_dir] $ cd debhello-1.0

parsing option -b ":sh"

binary package=debhello Type=script / Arch=all M-A=foreign
build_type = make

: ext_type = 1 1 files
: ext_type = desktop 1 files
: ext_type = md 1 files

! creating debian/* files with "-x 1" option

[debhello-1.0] $ licensecheck --recursive --copyright --deb-machine

: creating debian/copyright by licensecheck.
: creating debian/control from control.py
: creating debian/control by control.py

Here, the Makefile uses $(DESTDIR) and $(prefix) properly. All other files are the same as in «Pa3-

Let's package this with the debmake command. Here, the -b’:sh’ option is used to specify that the

: Non-native Debian package pkg="debhello", ver="1.0", rev="1" method="dir_d...
: already in the package-version form: "debhello-1.0"

> d...

96

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.3. MAKEFILE (KOMAHAHAS OBO/JIOHKA, ...

I: creating debian/changelog from extra®_changelog
: creating debian/rules from extra@_rules
I: creating debian/source/format from extra®source_format

—

Let’s inspect the notable template files generated.
debian/rules (wa6noHHbI haiin, v=1.0):

[base_dir] $ cd debhello-1.0

[debhello-1.0] $ cat debian/rules

#!/usr/bin/make -f

You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)

This is an autogenerated template for debian/rules.

#

Output every command that modifies files on the build system.
#export DH_VERBOSE = 1

Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.

These are rarely used code. (START)
The following include for *.mk magically sets miscellaneous

variables while honoring existing values of pertinent
environment variables:

H o HHHHHHHE

Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk

Vendor-related variables such as DEB_VENDOR:

#include /usr/share/dpkg/vendor .mk

Package-related variables such as DEB_DISTRIBUTION

#include /usr/share/dpkg/pkg-info.mk

#

You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)

#

These are rarely used code. (END)

#

main packaging script based on post dh7 syntax
%
dh $@

debmake generated override targets

Use "make prefix=/usr" (override prefix=/usr/local in Makefile)
#override_dh_auto_install:

dh_auto_install -- prefix=/usr

Do not install python .pyc .pyo if they exist
#override_dh_install:
dh_install --list-missing -X.pyc -X.pyo

Cpenaewm a10T nakeT Debian nyuywe.
debian/rules (Bepcusa conpoBoxpatouiero, v=1.0):

[base_dir] $ cd debhello-1.0

[debhello-1.0] $ vim debian/rules
hack, hack, hack,

[debhello-1.0] $ cat debian/rules

#!/usr/bin/make -f

export DH_VERBOSE = 1

% :
dh $@

97

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.4. PYPROJECT.TOML (PYTHONS, CLI)

override_dh_auto_install:
dh_auto_install -- prefix=/usr

Since this upstream source has the proper upstream Makefile, there is no need to create debian/install
and debian/manpages files.

®dalin debian/control B TouHOCTM coBnagaeT ¢ TeM xe haiinom us cnyyas «Pasgen 15.2».

B kartanore debian/ nvetotcsa n gpyrue wabnoHHble daiinel. Vx Takke cnegyet 06HOBUTb.

LLa6noHHbIe haiinbl B kKaTanore debian/. (v=1.0):

[debhello-1.0] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-1.0] $ rm -f debian/README.source debian/source/*.ex
[debhello-1.0] $ rm -rf debian/patches

[debhello-1.0] $ tree -F debian

debian/

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- docs
+-- examples
+-- gbp.conf

+-- manpages

+-- rules*

+-- salsa-ci.yml
+-- source/

| +-- format
+-- tests/

| +-- control
+-- upstream/

| +-- metadata
+-- watch

4 directories, 14 files

The rest of the packaging activities are practically the same as the ones in «Pa3gen 15.2».

15.4 pyproject.toml (Python3, CLI)

Here is an example of creating a simple Debian package from a Python3 CLI program using pyproject.toml.
MonyynT™m UCXoaHbIn kog 1 co3gaamm naket Debian.
Download debhello-1.1.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.1.tar.xz

[base_dir] $ tar --xz -xmf debhello-1.1.tar.xz
[base_dir] $ tree

+-- debhello-1.1
+-- LICENSE
+-- MANIFEST.in
+-- README.md
+-- data
[+-- hello.desktop
[+-- hello.png
+-- manpages

I
I
I
I
I
I
I
I
| +-- pyproject.toml
I
I
I
I
+

| +-- hello.1
+-- src
+-- debhello
+-- __init_ .py
+-- main.py
-- debhello-1.1.tar.xz

98

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.4. PYPROJECT.TOML (PYTHONS, CLI)

6 directories, 10 files

Here, the content of this debhello source tree as follows.
pyproject.toml (v=1.1) — PEP 517 configuration

[base_dir] $ cat debhello-1.1/pyproject.toml

[build-system]

requires = ["setuptools >= 61.0"] # REQUIRED if [build-system] table is used...
build-backend = "setuptools.build_meta" # If not defined, then legacy behavi...

[project]
name = "debhello"
version = "1.1.0"

description = "Hello Python (CLI)"
readme = {file = "README.md", content-type = "text/markdown"}
requires-python = ">=3.12"

license = "MIT"
keywords = ["debhello"]
authors = [
{name = "Osamu Aoki", email = "osamu@debian.org" },
]
maintainers = [
{name = "Osamu Aoki", email = "osamu@debian.org" },

]
classifiers = [
"Development Status :: 5 - Production/Stable",

"Intended Audience :: Developers",
"Topic :: System :: Archiving :: Packaging",
"Programming Language :: Python :: 3",

"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",

Others

"Operating System :: POSIX :: Linux",

"Natural Language :: English",
]
[project.urls]
"Homepage" = "https://salsa.debian.org/debian/debmake"
"Bug Reports" = "https://salsa.debian.org/debian/debmake/issues"
"Source" = "https://salsa.debian.org/debian/debmake"
[project.scripts]
hello = "debhello.main:main"
[tool.setuptools]
package-dir = {"" = "src"}

packages = ["debhello"]
include-package-data = true

MANIFEST.in (v=1.1) — for tar-ball.

[base_dir] $ cat debhello-1.1/MANIFEST.1in
include data/*
include manpages/*

srcldebhello/__init__.py (v=1.1)
[base_dir] $ cat debhello-1.1/src/debhello/__init__ .py

debhello program (CLI)

mnn

srcldebhello/main.py (v=1.1) — command entry point

[base_dir] $ cat debhello-1.1/src/debhello/main.py

debhello program

mnn

99

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.4. PYPROJECT.TOML (PYTHONS, CLI)

import sys
__version__ = '1.1.0'

def main(): # needed for console script
prj_nt(' ========== Hello Python3 ::::::::::')
print('argv = {}'.format(sys.argv))
print('version = {}'.format(debhello.__version__))
return

if __name__ == "__main__":
sys.exit(main())

Let's package this with the debmake command. Here, the -b’:py3’ option is used to specify the
generated binary package containing Python3 script and module files.

[base_dir] $ cd debhello-1.1

[debhello-1.1] $ debmake -b':py3' -x1

: debmake (version: 5.1.2)

: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
[debhello-1.1] $ cd

: Non-native Debian package pkg="debhello", ver="1.1", rev="1" method="dir_d...
: already in the package-version form: "debhello-1.1"

[base_dir] $ ln -sf debhello-1.1.tar.xz debhello_1.1.orig.tar.xz
[base_dir] $ cd debhello-1.1

parsing option -b ":py3"

binary package=debhello Type=python3 / Arch=all M-A=foreign
setuptools build system.

build_type = Python (pyproject.toml: PEP-518, PEP-621, PEP-660)

: ext_type = python3 2 files
: ext_type = 1 1 files
: ext_type = desktop 1 files
: creating debian/* files with "-x 1" option
[debhello-1.1] $ licensecheck --recursive --copyright --deb-machine . > d...

: creating debian/copyright by licensecheck.

: creating debian/control from control.py

: creating debian/control by control.py

: creating debian/changelog from extra®_changelog
: creating debian/rules from extra®_rules

HHHHHHHHHHHSE HHHHHKMHHHH

Let’s inspect the notable template files generated.
debian/rules (wa6noHHbIii haiin, v=1.1):

[base_dir] $ cd debhello-1.1

[debhello-1.1] $ cat debian/rules

#!/usr/bin/make -f

You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)

This is an autogenerated template for debian/rules.

#

Output every command that modifies files on the build system.
#export DH_VERBOSE = 1

Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.

These are rarely used code. (START)
The following include for *.mk magically sets miscellaneous

variables while honoring existing values of pertinent
environment variables:

HoH H O HHE W HHHE

Architecture-related variables such as DEB_TARGET_MULTIARCH:

100

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.4. PYPROJECT.TOML (PYTHONS, CLI)

#include /usr/share/dpkg/architecture.mk

Vendor-related variables such as DEB_VENDOR:
#include /usr/share/dpkg/vendor .mk

Package-related variables such as DEB_DISTRIBUTION
#include /usr/share/dpkg/pkg-info.mk

#

You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#

These are rarely used code. (END)

#

main packaging script based on post dh7 syntax
%
dh $@ --with python3 --buildsystem=pybuild

debmake generated override targets

Too complicated to provide examples here.

#

Check situation of Python on Debian

https://wiki.debian.org/Python

#

https://wiki.debian.org/Python/TransitionToDHPython2

https://wiki.debian.org/Python/Pybuild

https://wiki.debian.org/Python/LibraryStyleGuide

#

If a module package doesn't use distutils or setuptools but uses flit
you need flit plugin. See pybuild(1).

#

Pure PEP-517 based build with "python3 -m build ..." is supported.
#

To update the upstream source to support python3, see

https://wiki.python.org/moin/Python2orPython3

https://wiki.python.org/moin/PortingToPy3k/BilingualQuickRef

Mo cyTw, aTo cTaHAapTHbIi thaiin debian/rules, ncnonb3yowmii komaHay dh.

The use of the «--with python3» option invokes dh_python3 to calculate Python dependencies, add
maintainer scripts to byte compiled files, etc. See dh_python3(1).

The use of the «--buildsystem=pybuild» option invokes various build systems for requested Python
versions in order to build modules and extensions. See pybuild(1).

debian/control (wa6noHHbI’ aiin, v=1.1):

[debhello-1.1] $ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
dh-python,
pybuild-plugin-pyproject,
python3-all,
python3-setuptools,
Standards-Version: 4.7.3
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/<project_site>

Package: debhello
Section: unknown
Architecture: all
Multi-Arch: foreign
Depends:

101

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.4. PYPROJECT.TOML (PYTHONS, CLI)

${misc:Depends},

${python3:Depends},

Description: auto-generated package by debmake

This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

===== This comes from the unmodified template file =====

Please edit this template file (debian/control) and other package files
(debian/*) to make them meet all the requirements of the Debian Policy
before uploading this package to the Debian archive.
See
* https://www.debian.org/doc/manuals/developers-reference/best-pkging-pract...
* https://www.debian.org/doc/manuals/debmake-doc/ch@5.en.html#control

The synopsis description at the top should be about 60 characters and
written as a phrase. No extra capital letters or a final period. No
articles b''-b'' "a", "an", or "the".

The package description for general-purpose applications should be
written for a less technical user. This means that we should avoid
jargon. GNOME or KDE is fine but GTK+ is probably not.

Use the canonical forms of words:
* Use X Window System, X11, or X; not X Windows, X-Windows, or X Window.
* Use GTK+, not GTK or gtk.
* Use GNOME, not Gnome.
* Use PostScript, not Postscript or postscript.

Since this is the Python3 package, the debmake command sets «Architecture: all» and «Multi-
Arch: foreign». Also, it sets required substvar parameters as «<Depends: ${python3:Depends}, ${misc:Depends}»
These are explained in «[naga 6».

Cpenaem aToT nakeT Debian nyuwe.

debianl/rules (Bepcusa conpoBoxgatouiero, v=1.1):

[base_dir] $ cd debhello-1.1

[debhello-1.1] $ vim debian/rules
hack, hack, hack,

[debhello-1.1] $ cat debian/rules

#!/usr/bin/make -f

export PYBUILD_NAME=debhello

export PYBUILD_VERBOSE=1

export DH_VERBOSE=1

%
dh $@ --with python3 --buildsystem=pybuild

debian/control (Bepcus conposoxaatoiiero, v=1.1):

[debhello-1.1] $ vim debian/control
hack, hack, hack,

[debhello-1.1] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:

debhelper-compat (= 13),

pybuild-plugin-pyproject,

python3-all,
Standards-Version: 4.7.3

Rules-Requires-Root: no
Vcs-Browser: https://salsa.debian.org/debian/debmake-doc
Vcs-Git: https://salsa.debian.org/debian/debmake-doc.git

102

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.4. PYPROJECT.TOML (PYTHONS, CLI)

Homepage: https://salsa.debian.org/debian/debmake-doc

Package: debhello
Architecture: all
Depends:
${misc:Depends},
${python3:Depends},
Description: Simple packaging example for debmake
This is an example package to demonstrate Debian packaging using
the debmake command.

The generated Debian package uses the dh command offered by the
debhelper package and the dpkg source format 3.0 (quilt)'.

B katanore debian/ nvetotcs n gpyrve wabnoHHble goaiinbl. Vx Takke cnegyet 06HOBUTD.

This debhello command comes with the upstream-provided manpage and desktop file but the upstream
pyproject.toml doesn’t install them. So you need to update debianlinstall and debian/manpages as
follows:

debianlinstall (maintainer version, v=1.1):

[debhello-1.1] $ vim debian/copyright
hack, hack, hack,
[debhello-1.1] $ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2024 Osamu Aoki <osamu@debian.org>
License: Expat

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

debian/manpages (maintainer version, v=1.1):

[debhello-1.1] $ vim debian/install

hack, hack, hack,
[debhello-1.1] $ cat debian/install
data/hello.desktop usr/share/applications
data/hello.png usr/share/pixmaps

The rest of the packaging activities are practically the same as the ones in «Pa3gen 15.3».
LUa6noHHbIe haiin B Katanore debian/. (v=1.1):

[debhello-1.1] $ rm -f debian/clean debian/dirs debian/1links
[debhello-1.1] $ rm -f debian/README.source debian/source/*.ex
[debhello-1.1] $ rm -rf debian/patches

[debhello-1.1] $ tree -F debian

debian/

103

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.5. MAKEFILE (KOMAHAHAS OBO/JIOHKA, ...

+-- README.Debian
+-- changelog

+-- control

+-- copyright

+-- docs
+-- examples
+-- gbp.conf

+-- install

+-- manpages

+-- rules*

+-- salsa-ci.yml
+-- source/

| +-- format
+-- tests/

| +-- control
+-- upstream/

| +-- metadata
+-- watch

4 directories, 15 files

Here is the generated dependency list of debhello_1.1-1_all.deb.
The generated dependency list of debhello_1.1-1_all.deb:

[debhello-1.1] $ dpkg -f debhello_1.1-1_all.deb pre-depends \
depends recommends conflicts breaks
Depends: python3:any

15.5 Makefile (komaHgHas 060s10uKa, rpadnueckniit UHTepdeinc nonb-
3oBaresns)

Hwxe npuBoguTca npymMep co3faHus NpocToro naketa Debian n3 nporpammbl ¢ rpaddnyecknm UHTep-
doelicoMm nosb3oBaTesis, HanncaHHoW Ana koMaHAHoM 060104k POSIX 1 ucnonb3ytolleii B kKa4yecTse
cuctembl cbopku Makefile.

This upstream is based on «Pa3gen 15.3» with enhanced GUI support.

Let's assume its upstream tarball to be debhello-1.2.tar.xz.

MonyunT™M MCXOAHbIA Kog 1 co3gaamm naket Debian.

Download debhello-1.2.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.2.tar.xz

[base_dir] $ tar --xz -xmf debhello-1.2.tar.xz
[base_dir] $ tree

+-- debhello-1.2
+-- Makefile
+-- README.md
+-- data
[+-- hello.desktop
| +-- hello.png

I
I
I
I
I
I
| [+-- hello.1
I
I
+

+-- man
+-- scripts
+-- hello
-- debhello-1.2.tar.xz

5 directories, 7 files

Wtak, cueHapwii hello 6611 nepenncaH Takum ob6pasom, YTobbl ANst Co34aHUs rpadduUeckoro NHTep-
doelica nonb3oBatens Ha ocHoBe GTK+ ncnosib3oBasiacb KoMaHaa zenity.
hello (v=1.2)

104

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.5. MAKEFILE (KOMAHAHAS OBO/JIOHKA, ...

[base_dir] $ cat debhello-1.2/scripts/hello
#!/bin/sh -e
zenity --info --title "hello" --text "Hello from the shell!"

daiin desktop gomkeH 6biTb 06HOBMEH 1 AO/MKEH cofgepxaTb CTPoky Terminal=false, nockonbky ata
nporpamMmma nMmeet rpadmyeckunii MHTepdelic.
hello.desktop (v=1.2)

[base_dir] $ cat debhello-1.2/data/hello.desktop
[Desktop Entry]
Name=Hello
Name[fr]=Bonjour
Comment=Greetings
Comment[fr]=Salutations
Type=Application
Keywords=hello
Exec=hello
Terminal=false
Icon=hello.png
Categories=Utility;

All other files are the same as in «Pa3gen 15.3».
Let's package this with the debmake command. Here, the «-b’:sh’» option is used to specify that the
generated binary package is a shell script.

[base_dir] $ cd debhello-1.2
[debhello-1.2] $ debmake -b':sh' -x1
I: debmake (version: 5.1.2)

: creating debian/copyright by licensecheck.

: creating debian/control from control.py

: creating debian/control by control.py

: creating debian/changelog from extra®_changelog

: creating debian/rules from extra@_rules

: creating debian/source/format from extra@source_format

I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>

I: [debhello-1.2] $ cd

I: Non-native Debian package pkg="debhello", ver="1.2", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.2"

I: [base_dir] $ ln -sf debhello-1.2.tar.xz debhello_1.2.o0rig.tar.xz

I: [base_dir] $ cd debhello-1.2

I: parsing option -b ":sh"

I: binary package=debhello Type=script / Arch=all M-A=foreign

I: build_type = make

I: ext_type =1 1 files

I: ext_type = desktop 1 files

I: ext_type = md 1 files

I: creating debian/* files with "-x 1" option

I: [debhello-1.2] $ licensecheck --recursive --copyright --deb-machine . > d...
I

I

I

I

I

I

Let’s inspect the notable template files generated.
debian/control (wa6noHHbIi chaiin, v=1.2):

[debhello-1.2] $ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
Standards-Version: 4.7.3
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git

105

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.5. MAKEFILE (KOMAHAHAS OBO/JIOHKA, ...

#Vcs-Browser: https://salsa.debian.org/debian/<project_site>

Package: debhello

Section: unknown

Architecture: all

Multi-Arch: foreign

Depends:
${misc:Depends},

Description: auto-generated package by debmake
This Debian binary package was auto-generated by the
debmake(1) command provided by the debmake package.

===== This comes from the unmodified template file =====

Please edit this template file (debian/control) and other package files
(debian/*) to make them meet all the requirements of the Debian Policy
before uploading this package to the Debian archive.
See
* https://www.debian.org/doc/manuals/developers-reference/best-pkging-pract...
* https://www.debian.org/doc/manuals/debmake-doc/ch@5.en.html#control

The synopsis description at the top should be about 60 characters and
written as a phrase. No extra capital letters or a final period. No
articles b''-b'' "a", "an", or "the".

The package description for general-purpose applications should be
written for a less technical user. This means that we should avoid
jargon. GNOME or KDE is fine but GTK+ is probably not.

Use the canonical forms of words:
* Use X Window System, X11, or X; not X Windows, X-Windows, or X Window.
* Use GTK+, not GTK or gtk.
* Use GNOME, not Gnome.
* Use PostScript, not Postscript or postscript.

Cpoenaem 3ToT nakeT Debian nyywe.
debian/control (Bepcusa conpoBoxgatowiero, v=1.2):

[debhello-1.2] $ vim debian/control
hack, hack, hack,

[debhello-1.2] $ cat debian/control
Source: debhello
Section: devel

Priority: optional

Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:

debhelper-compat (= 13),
Standards-Version: 4.7.3

Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello

Architecture: all

Multi-Arch: foreign

Depends:
zenity,
${misc:Depends},

Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Please note the manually added zenity dependency.
®daiin debian/rules nonHOCTLIO cOBNagaeT ¢ TeM xe dhaiisiom 13 «Pasgen 15.3».
B katanore debian/ nvetotcs n gpyrve wabnoHHble gpaiinbl. Vx Takke cnegyet 06HOBUTD.

106

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.6. PYPROJECT.TOML (PYTHONS3, GUI)

LLa6noHHbIe chaiinbl B kKaTanore debian/. (v=1.2):

[debhello-1.2] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-1.2] $ rm -f debian/README.source debian/source/*.ex
[debhello-1.2] $ rm -rf debian/patches

[debhello-1.2] $ tree -F debian

debian/

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- docs
+-- examples
+-- gbp.conf

+-- manpages

+-- rules*

+-- salsa-ci.yml
+-- source/

| +-- format
+-- tests/

| +-- control
+-- upstream/

| +-- metadata
+-- watch

4 directories, 14 files

The rest of the packaging activities are practically the same as in «Pazgen 15.3».
Here is the generated dependency list of debhello_1.2-1_all.deb.
The generated dependency list of debhello_1.2-1_all.deb:

[debhello-1.2] $ dpkg -f debhello_1.2-1_all.deb pre-depends \
depends recommends conflicts breaks
Depends: zenity

15.6 pyproject.toml (Python3, GUI)

Here is an example of creating a simple Debian package from a Python3 GUI program using pyproject.toml.
Let's assume this upstream tarball to be debhello-1.3.tar.xz.
MonyunT™m MCXOaHbIN koA 1 co3gaamm naket Debian.
Download debhello-1.3.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.3.tar.xz

[base_dir] $ tar --xz -xmf debhello-1.3.tar.xz
[base_dir] $ tree

+-- debhello-1.3
+-- LICENSE
+-- MANIFEST.in
+-- README.md
+-- data
[+-- hello.desktop
[+-- hello.png
+-- manpages

I
I
I
I
I
I
I
I
| +-- pyproject.toml
I
I
I
I
+

[+-- hello.1
+-- src
+-- debhello
+-- __init_ .py
+-- main.py
-- debhello-1.3.tar.xz

107

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.6. PYPROJECT.TOML (PYTHONS3, GUI)

6 directories, 10 files

Here, the content of this debhello source tree as follows.
pyproject.toml (v=1.3) — PEP 517 configuration

[base_dir] $ cat debhello-1.3/pyproject.toml

[build-system]

requires = ["setuptools >= 61.0"] # REQUIRED if [build-system] table is used...
build-backend = "setuptools.build_meta" # If not defined, then legacy behavi...

[project]
name = "debhello"
version = "1.3.0"

description = "Hello Python (GUI)"
readme = {file = "README.md", content-type = "text/markdown"}
requires-python = ">=3.12"

license = "MIT"
keywords = ["debhello"]
authors = [

{name = "Osamu Aoki", email = "osamu@debian.org" },
]
maintainers = [

{name = "Osamu Aoki", email = "osamu@debian.org" },
]

classifiers = [
"Development Status :: 5 - Production/Stable",

"Intended Audience :: Developers",
"Topic :: System :: Archiving :: Packaging",
"Programming Language :: Python :: 3",

"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",
Others
"Operating System :: POSIX :: Linux",
"Natural Language :: English",
1
[project.urls]
"Homepage" = "https://salsa.debian.org/debian/debmake"
"Bug Reports" = "https://salsa.debian.org/debian/debmake/issues"
"Source" = "https://salsa.debian.org/debian/debmake"
[project.scripts]
hello = "debhello.main:main"
[tool.setuptools]
package-dir = {"" = "src"}
packages = ["debhello"]
include-package-data = true

MANIFEST.in (v=1.3) — for tar-ball.

[base_dir] $ cat debhello-1.3/MANIFEST.in
include data/*
include manpages/*

srcldebhello/__init__.py (v=1.3)
[base_dir] $ cat debhello-1.3/src/debhello/__init__ .py

mnn

debhello program (GUI)

srcldebhello/main.py (v=1.3) — command entry point

[base_dir] $ cat debhello-1.3/src/debhello/main.py
#!/usr/bin/python3
from gi.repository import Gtk

__version__ = '1.3.0'

108

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.6. PYPROJECT.TOML (PYTHONS3, GUI)

class TopwWindow(Gtk.Window):

def __init_ (self):
Gtk.Window.__init__ (self)
self.title = "Hello World!"
self.counter = 0
self.border_width = 10
self.set_default_size (400, 100)
self.set_position(Gtk.WindowPosition.CENTER)
self.button = Gtk.Button(label="Click me!")
self.button.connect("clicked", self.on_button_clicked)
self.add(self.button)
self.connect("delete-event", self.on_window_destroy)

def on_window_destroy(self, *args):
Gtk.main_quit(*args)

def on_button_clicked(self, widget):
self.counter += 1
widget.set_label("Hello, World!\nClick count = %i" % self.counter)

def main():
window = TopWindow()
window.show_all()
Gtk.main()

1 1

if _ _name__ == '__main__':

main()

Let's package this with the debmake command. Here, the -b’:py3’ option is used to specify that the
generated binary package contains Python3 script and module files.

[base_dir] $ cd debhello-1.3

[debhello-1.3] $ debmake -b':py3' -x1

: debmake (version: 5.1.2)

: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
[debhello-1.3] $ cd

: Non-native Debian package pkg="debhello", ver="1.3", rev="1" method="dir_d...
: already in the package-version form: "debhello-1.3"

[base_dir] $ 1n -sf debhello-1.3.tar.xz debhello_1.3.orig.tar.xz
[base_dir] $ cd debhello-1.3

parsing option -b ":py3"

binary package=debhello Type=python3 / Arch=all M-A=foreign
setuptools build system.

build_type = Python (pyproject.toml: PEP-518, PEP-621, PEP-660)

: ext_type = python3 2 files
: ext_type = 1 1 files
: ext_type = desktop 1 files
: creating debian/* files with "-x 1" option
[debhello-1.3] $ licensecheck --recursive --copyright --deb-machine . > d...

: creating debian/copyright by licensecheck.

: creating debian/control from control.py

! creating debian/control by control.py

: creating debian/changelog from extra®_changelog
: creating debian/rules from extra@_rules

HHHHHHHHHHHS HHHKMHHKMHHKHH

The result is practically the same as in «Pa3gen 15.4».
Cpenaewm 3101 nakeT Debian nyuwe.
debian/rules (Bepcusa conpoBoxgatouiero, v=1.3):

[base_dir] $ cd debhello-1.3
[debhello-1.3] $ vim debian/rules
hack, hack, hack,

109

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.7. MAKEFILE (SINGLE-BINARY PACKAGE)

[debhello-1.3] $ cat debian/rules
#!/usr/bin/make -f

export PYBUILD_NAME=debhello
export PYBUILD_VERBOSE=1

export DH_VERBOSE=1

%:
dh $@ --with python3 --buildsystem=pybuild

debian/control (Bepcus conposoxaatouiero, v=1.3):

[debhello-1.3] $ vim debian/control
. hack, hack, hack,
[debhello-1.3] $ cat debian/control
Source: debhello
Section: devel
Priority: optional
Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
pybuild-plugin-pyproject,
python3-all,
Standards-Version: 4.7.3
Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: all
Multi-Arch: foreign

Depends:
girl.2-gtk-3.0,
python3-gi,

${misc:Depends},

${python3:Depends},
Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

Please note the manually added python3-gi and girl.2-gtk-3.0 dependencies.
The rest of the packaging activities are practically the same as in <pyproject>>.
Here is the generated dependency list of debhello_1.3-1_all.deb.

The generated dependency list of debhello_1.3-1_all.deb:

[debhello-1.3] $ dpkg -f debhello_1.3-1_all.deb pre-depends \
depends recommends conflicts breaks
Depends: girl.2-gtk-3.0, python3-gi, python3:any

15.7 Makefile (single-binary package)

Here is an example of creating a simple Debian package from a simple C source program using the
Makefile as its build system.

3TO — nNpuMep yNyudLLEHHOIo MCXOAHOIo KoAa OCHOBHOM BETKM U3 «InaBa 5». OH coaepXuT cTpaHuly
pykoBoacTBa, thaiin desktop, a Takke MKOHKY paboyero ctosia. Kpome Toro, 4tobbl 3TOT NpUMep Umen
60/1bLLUYH NPaKTUYECKYIO LLEHHOCTb, MCXOAHbI KOAKOMMAHYETCS C BHELLHE 61mbnmnoTekoi libm.

Let’'s assume this upstream tarball to be debhello-1.4.tar.xz.

Mpepnonaraetcs, 4TO 3TOT TUM MCXOLHOIO Koga ByaeT yCTaHOB/IEH Kak HECUCTEMHbIV dhaiin:

[base_dir] $ tar --xz -xmf debhello-1.4.tar.xz
[base_dir] $ cd debhello-1.4

[debhello-1.4] $ make

[debhello-1.4] $ make install

110

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.7. MAKEFILE (SINGLE-BINARY PACKAGE)

Debian packaging requires changing this «make install» process to install files into the target system
image location instead of the normal location under lusr/local.

MonyuynT™M UCXoAHbI ko 1 co3gaamm nakeT Debian.

Download debhello-1.4.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.4.tar.xz

[base_dir] $ tar --xz -xmf debhello-1.4.tar.xz
[base_dir] $ tree

+-- debhello-1.4
+-- LICENSE
+-- Makefile
+-- README.md
+-- data
| +-- hello.desktop
[+-- hello.png

I
I
I
I
I
I
I
| [+-- hello.1
I
I
I
+

+-- man
+-- src
+-- config.h
+-- hello.c
-- debhello-1.4.tar.xz

5 directories, 9 files

Hwxke NpMBOANTCS COAEPXKMMOE 3TOTO apXmBa C MCXOAHbIM KOLOM.
srcl/hello.c (v=1.4):

[base_dir] $ cat debhello-1.4/src/hello.c
#include "config.h"

#include <math.h>

#include <stdio.h>

int

main()

{
printf("Hello, I am " PACKAGE_AUTHOR "!\n");
printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));
return 0O;

}

srclconfig.h (v=1.4):

[base_dir] $ cat debhello-1.4/Makefile
prefix = /usr/local

all: src/hello

src/hello: src/hello.c
$(CC) $(CPPFLAGS) $(CFLAGS) $(LDFLAGS) -0 $@ $A -1m

install: src/hello

install -D src/hello \
$(DESTDIR)$(prefix)/bin/hello

install -m 644 -D data/hello.desktop \
$(DESTDIR)S$(prefix)/share/applications/hello.desktop

install -m 644 -D data/hello.png \
$(DESTDIR)$(prefix)/share/pixmaps/hello.png

install -m 644 -D man/hello.1 \
$(DESTDIR)$(prefix)/share/man/mani/hello.1

clean:
-rm -f src/hello

distclean: clean

111

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.7. MAKEFILE (SINGLE-BINARY PACKAGE)

uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/manl/hello.1

.PHONY: all install clean distclean uninstall

Makefile (v=1.4):

[base_dir] $ cat debhello-1.4/src/config.h
#define PACKAGE_AUTHOR "Osamu Aoki"

3awmeTbTe, uTo 3T0T paiin Makefile nmeeT cooTBeTcTBYOLWLYIO Lenb install ons ctpaHmupsl pykoBoa-
cTBa, (haiina desktop 1 nkoHkM paboyero crtona.
Coszgagmm nakeT U3 3Toro UCXo04HOro Koga ¢ nomoLbio kKomaHasl debmake.

[base_dir] $ cd debhello-1.4
[debhello-1.4] $ debmake -x1
I: debmake (version: 5.1.2)

: creating debian/copyright by licensecheck.

: creating debian/control from control.py

: creating debian/control by control.py

: creating debian/changelog from extra®_changelog

: creating debian/rules from extra®_rules

: creating debian/source/format from extra®@source_format

I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>

I: [debhello-1.4] $ cd

I: Non-native Debian package pkg="debhello", ver="1.4", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.4"

I: [base_dir] $ ln -sf debhello-1.4.tar.xz debhello_1.4.o0rig.tar.xz

I: [base_dir] $ cd debhello-1.4

I: parsing option -b ""

I: binary package=debhello Type=bin / Arch=any M-A=foreign

I: build_type = make

I: ext_type = ¢ 2 files

I: ext_type =1 1 files

I: ext_type = desktop 1 files

I: creating debian/* files with "-x 1" option

I: [debhello-1.4] $ licensecheck --recursive --copyright --deb-machine . > d...
I:

I

I

I

I:

I

The result is practically the same as in «Pa3gen 5.6».

Let's make this Debian package, which is practically the same as in «Pa3gen 5.7», better as the
maintainer.

If the DEB_BUILD_MAINT_OPTIONS environment variable is not exported in debian/rules, lintian
warns «W: debhello: hardening-no-relro usr/bin/hello» for the linking of libm.

The debian/control file makes it exactly the same as the one in «Pa3gen 5.7», since the libm library
is always available as a part of libc6 (Priority: required).

B katanore debian/ nmetotcs n gpyrme wabnoHHble dainel. VX Takke cnegyetr 06HOBUTb.

LLa6noHHbIe haiinbl B Katanore debian/. (v=1.4):

[debhello-1.4] $ rm -f debian/clean debian/dirs debian/1links
[debhello-1.4] $ rm -f debian/README.source debian/source/*.ex
[debhello-1.4] $ rm -rf debian/patches

[debhello-1.4] $ tree -F debian

debian/

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- docs
+-- examples
+-- gbp.conf

112

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.8. MAKEFILE.IN + CONFIGURE ...

+-- install

+-- manpages

+-- rules*

+-- salsa-ci.yml
+-- source/

| +-- format
+-- tests/

| +-- control
+-- upstream/

| +-- metadata
+-- watch

4 directories, 15 files

OcTasibHble paboThl NO MNOATOTOBKE NakeTa MpakTUYeckn NOSIHOCTLI0 COBMaZaloT C OMUCaHHbIMU B
«Pa3pnen 5.8».

Here is the generated dependency list of all binary packages.

The generated dependency list of all binary packages (v=1.4):

[debhello-1.4] $ dpkg -f debhello-dbgsym_1.4-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 1.4-1)

[debhello-1.4] $ dpkg -f debhello_1.4-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: 1ibc6 (>= 2.34)

15.8 Makefile.in + configure (single-binary package)

Here is an example of creating a simple Debian package from a simple C source program using Makefile.in
and configure as its build system.

This is an enhanced upstream source example for «Pa3gen 15.7». This also links to an external
library, libm, and this source is configurable using arguments to the configure script, which generates
the Makefile and src/config.h files.

Let's assume this upstream tarball to be debhello-1.5.tar.xz.

DTOT TUN UCXOAHOIO Koga npeanonaraeT ycTaHOBKY B BUAE HECUCTEMHOrO haiina, Hanpumep, kak

[base_dir] $ tar --xz -xmf debhello-1.5.tar.xz
[base_dir] $ cd debhello-1.5

[debhello-1.5] $./configure --with-math
[debhello-1.5] $ make

[debhello-1.5] $ make install

MonyunTmM UCXoAHbIA kog 1 co3gaamm nakeT Debian.
Download debhello-1.5.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.5.tar.xz

[base_dir] $ tar --xz -xmf debhello-1.5.tar.xz
[base_dir] $ tree

+-- debhello-1.5

| +-- LICENSE

| +-- Makefile.in

| +-- README.md

| +-- configure

| +-- data

| [+-- hello.desktop
| | +-- hello.png
|

I

I

+-- man
| +-- hello.1
+-- src

+-- hello.c

113

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.8. MAKEFILE.IN + CONFIGURE ...

+-- debhello-1.5.tar.xz
5 directories, 9 files

Hwxe npmBoaMTCA COAEpXMMOe 3TOro apxmBa C UCXOAHbIM KOAOM.
srclhello.c (v=1.5):

[base_dir] $ cat debhello-1.5/src/hello.c
#include "config.h"
#ifdef WITH_MATH
1include <math.h>
#endif
#include <stdio.h>
int
main()
{
printf("Hello, I am " PACKAGE_AUTHOR "!\n");

#ifdef WITH_MATH
printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));

#else

printf("I can't do MATH!\n");
#endif

return 0O,
}

Makefile.in (v=1.5):

[base_dir] $ cat debhello-1.5/Makefile.in
prefix = @prefix@

all: src/hello

src/hello: src/hello.c
$(CC) @VERBOSE@ \
$(CPPFLAGS) \
$(CFLAGS) \
$(LDFLAGS) \
-0 $@ $M N\
@LINKLIB@

install: src/hello

install -D src/hello \
$(DESTDIR)$(prefix)/bin/hello

install -m 644 -D data/hello.desktop \
$(DESTDIR)$(prefix)/share/applications/hello.desktop

install -m 644 -D data/hello.png \
$(DESTDIR)$(prefix)/share/pixmaps/hello.png

install -m 644 -D man/hello.1 \
$(DESTDIR)$(prefix)/share/man/mani/hello.1

clean:
-rm -f src/hello

distclean: clean
uninstall:
-rm -f $(DESTDIR)$(prefix)/bin/hello
-rm -f $(DESTDIR)$(prefix)/share/applications/hello.desktop
-rm -f $(DESTDIR)$(prefix)/share/pixmaps/hello.png
-rm -f $(DESTDIR)$(prefix)/share/man/manl/hello.1

.PHONY: all install clean distclean uninstall

configure (v=1.5):

114

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.8. MAKEFILE.IN + CONFIGURE ...

[base_dir] $ cat debhello-1.5/configure
#!/bin/sh -e

default values

PREFIX="/usr/local"

VERBOSE=""

WITH_MATH="0Q"

LINKLIB=""

PACKAGE_AUTHOR="John Doe"

parse arguments
while ["${1}" '= "" 7]; do
VAR="${1%=*}" # Drop suffix =*
VAL="${1#*=}" # Drop prefix *=
case "${VAR}" in
--prefix)
PREFIX="${VAL}"
--verbose|-v)
VERBOSE="-v"

rs

--with-math)
WITH_MATH="1"
LINKLIB="-1m"
y

--author)
PACKAGE_AUTHOR="${VAL}"
y

*)
echo "W: Unknown argument: ${1}"

esac

shift

done

setup configured Makefile and src/config.h
sed -e "s,@prefix@, ${PREFIX}," \
-e "s,@VERBOSE@, ${VERBOSE}, " \
-e "s,@LINKLIB@, ${LINKLIB}," \
<Makefile.in >Makefile
if ["${WITH_MATH}" = 1]; then
echo "#define WITH_MATH" >src/config.h
else
echo "/* not defined: WITH_MATH */" >src/config.h
fi
echo "#define PACKAGE_AUTHOR \"${PACKAGE_AUTHOR}\"" >>src/config.h

Please note that the configure command replaces strings with @...@ in Makefile.in to produce
Makefile and creates srclconfig.h.
Co3gaanm nakeT M3 3TOro UCXOAHOro Kofa ¢ noMoubio komaHabsl debmake.

[base_dir] $ cd debhello-1.5
[debhello-1.5] $ debmake -x1
I: debmake (version: 5.1.2)

I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>

I: [debhello-1.5] $ cd

I: Non-native Debian package pkg="debhello", ver="1.5", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.5"

I: [base_dir] $ 1n -sf debhello-1.5.tar.xz debhello_1.5.0rig.tar.xz
I: [base_dir] $ cd debhello-1.5

I: parsing option -b ""

I: binary package=debhello Type=bin / Arch=any M-A=foreign

I: build_type = configure

I: ext_type = c¢ 1 files

I: ext_type =1 1 files

I: ext_type = desktop 1 files

115

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.8. MAKEFILE.IN + CONFIGURE ...

: creating debian/* files with "-x 1" option

[debhello-1.5] $ licensecheck --recursive --copyright --deb-machine . > d...
: creating debian/copyright by licensecheck.

: creating debian/control from control.py

: creating debian/control by control.py

! creating debian/changelog from extra®_changelog

. creating debian/rules from extra®_rules

creating debian/source/format from extra®@source_format

HHHHHKHH H

MonyyeHHbI pesynsTaT NoxoX Ha To, YTO onucaHo B «Pa3gen 5.6», HO NOMHOCTBLIO OHM He cOoBMa-
JaioT.

Let’s inspect the notable template files generated.

debian/rules (wa6noHHbI haiin, v=1.5):

[base_dir] $ cd debhello-1.5

[debhello-1.5] $ cat debian/rules

#!/usr/bin/make -f

You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)

This is an autogenerated template for debian/rules.

#

Output every command that modifies files on the build system.
#export DH_VERBOSE = 1

Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.

See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options

#export DEB_BUILD_MAINT_OPTIONS = hardening=+all

Package maintainers to append CFLAGS

#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic

Package maintainers to append LDFLAGS

#export DEB_LDFLAGS_MAINT_APPEND = -W1,-01

#
#
#
#
#
#

with debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.

These are rarely used code. (START)
The following include for *.mk magically sets miscellaneous

variables while honoring existing values of pertinent
environment variables:

H o H O HHE W HHHE

Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk

Vendor-related variables such as DEB_VENDOR:

#include /usr/share/dpkg/vendor .mk

Package-related variables such as DEB_DISTRIBUTION

#include /usr/share/dpkg/pkg-info.mk

#

You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)

#

These are rarely used code. (END)

#

main packaging script based on post dh7 syntax
%:
dh $@

debmake generated override targets

116

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.9. AUTOTOOLS (SINGLE-BINARY PACKAGE)

Multiarch package requires library files to be installed to

/usr/lib/<triplet>/ . 1If the build system does not support

$(DEB_HOST_MULTIARCH), you may need to override some targets such as
dh_auto_configure or dh_auto_install to use $(DEB_HOST_MULTIARCH)

Cpenaem atoT nakeT Debian nyJwe.
debian/rules (Bepcua conpoBoxpatouiero, v=1.5):

[base_dir] $ cd debhello-1.5
[debhello-1.5] $ vim debian/rules
. hack, hack, hack,
[debhello-1.5] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND -W1, --as-needed

%

dh $@
override_dh_auto_configure:
dh_auto_configure -- \
--with-math \

--author="0samu Aoki"

B katanore debian/ nvetotcsa n gpyrue wabnoHHble daiinel. Vx Takke cnegyet 06HOBUT.
OcTasibHble paboTbl N0 NOAFOTOBKE MakeTa NpPakTUYecKn MOIHOCTbI0 COBNaJal0T C ONMCaHHbIMU B
«Pa3pgen 5.8».

15.9 Autotools (single-binary package)

Here is an example of creating a simple Debian package from a simple C source program using Autotools
= Autoconf and Automake (Makefile.am and configure.ac) as its build system.

This source usually comes with the upstream auto-generated Makefile.in and configure files, too.
This source can be packaged using these files as in «Pasgen 15.8» with the help of the autotools-dev
package.

The better alternative is to regenerate these files using the latest Autoconf and Automake packages
if the upstream provided Makefile.am and configure.ac are compatible with the latest version. This is
advantageous for porting to new CPU architectures, etc. This can be automated by using the «--with
autoreconf» option for the dh command.

Let's assume this upstream tarball to be debhello-1.6.tar.xz.

DTOT TMN NCXOAHOTO KOoAa Npeanosiaraet ycTaHOBKY B BUAe HECUCTEMHOrO dhaiinia, Hanpumep, Kak

[base_dir] $ tar --xz -xmf debhello-1.6.tar.xz
[base_dir] $ cd debhello-1.6

[debhello-1.6] $ autoreconf -ivf # optional
[debhello-1.6] $./configure --with-math
[debhello-1.6] $ make

[debhello-1.6] $ make install

MonyunTM MCXOAHbIA Kog 1 co3gaamm naket Debian.
Download debhello-1.6.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.6.tar.xz

[base_dir] $ tar --xz -xmf debhello-1.6.tar.xz
[base_dir] $ tree

+-- debhello-1.6

| +-- LICENSE

| +-- Makefile.am
| +-- README.md

117

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.9. AUTOTOOLS (SINGLE-BINARY PACKAGE)

+-- configure.ac

+-- data

[+-- hello.desktop
[+-- hello.png

I

I

I

I

| +-- man

| [+-- Makefile.am
| [+-- hello.1

| +-- src

| +-- Makefile.am
| +-- hello.c

+-- debhello-1.6.tar.xz

5 directories, 11 files

Hwxe NpMBoANTCA COAEPXMMOE 3TOTO apXuBa C MCXOAHbIM KOAOM.
srclhello.c (v=1.6):

[base_dir] $ cat debhello-1.6/src/hello.c
#include "config.h"
#ifdef WITH_MATH
1include <math.h>
#endif
#include <stdio.h>
int
main()
{
printf("Hello, I am " PACKAGE_AUTHOR "!\n");

#ifdef WITH_MATH
printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));

#else

printf("I can't do MATH!\n");
#endif

return 0O,
}

Makefile.am (v=1.6):

[base_dir] $ cat debhello-1.6/Makefile.am
SUBDIRS = src man

[base_dir] $ cat debhello-1.6/man/Makefile.am
dist_man_MANS = hello.1

[base_dir] $ cat debhello-1.6/src/Makefile.am
bin_PROGRAMS = hello

hello_SOURCES = hello.c

configure.ac (v=1.6):

[base_dir] $ cat debhello-1.6/configure.ac
-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])
AC_INIT([debhello], [2.1], [foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])
echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])
AM_INIT_AUTOMAKE ([foreign])
Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
echo "Add --with-math option functionality to ./configure"
AC_ARG_WITH([math],

[AS_HELP_STRING([--with-math],

[compile with math library @<:@default=yes@:>@])],

[1,

[with_math="yes"]

)

118

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.9. AUTOTOOLS (SINGLE-BINARY PACKAGE)

echo "==== withval = \"$withval\""

echo "==== with_math := \"$with_math\""

m4sh if-else construct

AS_IF([test "x$with_math" != "xno"], [
echo "==== Check include: math.h"

AC_CHECK_HEADER(math.h, [1, [
AC_MSG_ERROR([Couldn't find math.h.])
1)
echo "==== Check library: libm"
AC_SEARCH_LIBS(atan, [m])
#AC_CHECK_LIB(m, atan)
echo "==== Build with LIBS := \"$LIBS\""
AC_DEFINE(WITH_MATH, [1], [Build with the math library])
1.0
echo "==== Skip building with math.h."
AH_TEMPLATE (WITH_MATH, [Build without the math library])
1)
Checks for programs.
AC_PROG_CC
AC_CONFIG_FILES([Makefile
man/Makefile
src/Makefile])
AC_OUTPUT

Moackaska

above, automake defaults to «gnu» strictness level requiring several files in the

‘ Without «foreign» strictness level specified in AM_INIT_AUTOMAKE() as
top-level directory. See «3.2 Strictness» in the automake document.

Coszgagmm nakeT U3 3Toro MCXo04HOro Kogda ¢ nomoubio kKomaHasl debmake.

[base_dir] $ cd debhello-1.6
[debhello-1.6] $ debmake -x1
I: debmake (version: 5.1.2)

: creating debian/copyright by licensecheck.

: creating debian/control from control.py

: creating debian/control by control.py

: creating debian/changelog from extra®_changelog

: creating debian/rules from extra0®_rules

: creating debian/source/format from extra®source_format

I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>

I: [debhello-1.6] $ cd

I: Non-native Debian package pkg="debhello", ver="1.6", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.6"

I: [base_dir] $ ln -sf debhello-1.6.tar.xz debhello_1.6.0rig.tar.xz

I: [base_dir] $ cd debhello-1.6

I: parsing option -b ""

I: binary package=debhello Type=bin / Arch=any M-A=foreign

I: build_type = Autotools with autoreconf

I: ext_type = am 3 files

I: ext_type = ¢ 1 files

I: ext_type =1 1 files

I: creating debian/* files with "-x 1" option

I: [debhello-1.6] $ licensecheck --recursive --copyright --deb-machine . > d...
I

I

I:

I

I

I

MonyunBLLMCA pe3y/nbTaT MOXOX Ha To, YTo 6bl10 onucaHo B «Pa3gen 15.8», HO He coBnajaer ¢
HVM B TOUYHOCTMW.

Let’s inspect the notable template files generated.

debian/rules (wa6noHHbIN haiin, v=1.6):

119

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.9. AUTOTOOLS (SINGLE-BINARY PACKAGE)

[base_dir] $ cd debhello-1.6

[debhello-1.6] $ cat debian/rules

#!/usr/bin/make -f

You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)

This is an autogenerated template for debian/rules.

#

Output every command that modifies files on the build system.
#export DH_VERBOSE = 1

Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.

See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options

#export DEB_BUILD_MAINT_OPTIONS = hardening=+all

Package maintainers to append CFLAGS

#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic

Package maintainers to append LDFLAGS

#export DEB_LDFLAGS_MAINT_APPEND = -W1,-01

H H O H HH

with debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.

These are rarely used code. (START)
The following include for *.mk magically sets miscellaneous

variables while honoring existing values of pertinent
environment variables:

H o K HHHEHHHHH

Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk

Vendor-related variables such as DEB_VENDOR:

#include /usr/share/dpkg/vendor .mk

Package-related variables such as DEB_DISTRIBUTION

#include /usr/share/dpkg/pkg-info.mk

#

You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)

#

These are rarely used code. (END)

#

main packaging script based on post dh7 syntax
%:
dh $@ --with autoreconf

debmake generated override targets

Set options for ./configure

#CONFIGURE_FLAGS = <options for ./configure>
#overrride_dh_configure:

dh_configure -- $(CONFIGURE_FLAGS)

#

Do not install libtool archive, python .pyc .pyo
#override_dh_install:

dh_install --1list-missing -X.la -X.pyc -X.pyo

Cpenaem a1oT nakeT Debian nyuywe.
debian/rules (Bepcusa conpoBoxgatouiero, v=1.6):

[base_dir] $ cd debhello-1.6
[debhello-1.6] $ vim debian/rules
hack, hack, hack,

120

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.10. CMAKE (SINGLE-BINARY PACKAGE)

[debhello-1.6] $ cat debian/rules

#!/usr/bin/make -f

export DH_VERBOSE = 1

export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -W1, --as-needed

%
dh $@ --with autoreconf

override_dh_auto_configure:
dh_auto_configure -- \
--with-math

B katanore debian/ nvetotcs n gpyrve wabnoHHble goaiinbl. Vx Takke cnegyet 06HOBUTD.
OcTasibHble paboThl MO NOAFOTOBKE MakeTa NpPaKkTUYecKn MOIHOCTbI0 COBNAaAatdT C ONUCAHHbIMU B
«Pa3gen 5.8».

15.10 CMake (single-binary package)

Here is an example of creating a simple Debian package from a simple C source program using CMake
(CMakeLists.txt and some files such as config.h.in) as its build system.

The cmake command generates the Makefile file based on the CMakeLists.txt file and its -D option.
It also configures the file as specified in its configure_file(...) by replacing strings with @...@ and
changing the #cmakedefine ... line.

Let's assume this upstream tarball to be debhello-1.7.tar.xz.

DTOT TMN NCXOAHOTO KoAa nNpeanosaraet yCTaHOBKY B BUAe HECUCTEMHOrO dhaiinia, Hanpumep, Kak

[base_dir] $ tar --xz -xmf debhello-1.7.tar.xz

[base_dir] $ cd debhello-1.7

[debhello-1.7] $ mkdir obj-x86_64-1linux-gnu # for out-of-tree build
[debhello-1.7] $ cd obj-x86_64-1inux-gnu

[debhello-1.7] $ cmake ..

[debhello-1.7] $ make

[debhello-1.7] $ make install

MonyynT™M UCXoAHbIN kog 1 co3gaamm nakeT Debian.
Download debhello-1.7.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-1.7.tar.xz

[base_dir] $ tar --xz -xmf debhello-1.7.tar.xz
[base_dir] $ tree

+-- debhello-1.7
+-- CMakelLists.txt

+-- LICENSE
+-- README.md
+-- data

| +-- hello.desktop
| +-- hello.png

I
I
I
I
I
I
I
I
| [+-- hello.1
I
I
I
I
+

+-- man
[+-- CMakelLists.txt
+-- src
+-- CMakelLists.txt
+-- config.h.in
+-- hello.c
-- debhello-1.7.tar.xz

5 directories, 11 files

121

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.10. CMAKE (SINGLE-BINARY PACKAGE)

Hwxke NpmBoOANTCS COAEPXKMMOE 3TOTO apXmBa C MCXOAHbIM KOZOM.
srcl/hello.c (v=1.7):

[base_dir] $ cat debhello-1.7/src/hello.c
#include "config.h"
#ifdef WITH_MATH
include <math.h>
#endif
#include <stdio.h>
int
main()
{
printf("Hello, I am " PACKAGE_AUTHOR "!\n");

#ifdef WITH_MATH
printf("4.0 * atan(1.0) = %10f8\n", 4.0*atan(1.0));

#else

printf("I can't do MATH!\n");
#endif

return 0;
}

srclconfig.h.in (v=1.7):

[base_dir] $ cat debhello-1.7/src/config.h.in
/* name of the package author */

#define PACKAGE_AUTHOR "@PACKAGE_AUTHOR@"

/* math library support */

#cmakedefine WITH_MATH

CMakelLists.txt (v=1.7):

[base_dir] $ cat debhello-1.7/CMakeLists.txt
cmake_minimum_required(VERSION 3.31)
project(debhello)
set (PACKAGE_AUTHOR "Osamu Aoki")
add_subdirectory(src)
add_subdirectory(man)
[base_dir] $ cat debhello-1.7/man/CMakelLists.txt
install(
FILES ${CMAKE_CURRENT_SOURCE_DIR}/hello.1
DESTINATION share/man/manil
)
[base_dir] $ cat debhello-1.7/src/CMakeLists.txt
Always define HAVE_CONFIG_H
add_definitions(-DHAVE_CONFIG_H)
Interactively define WITH_MATH
option(WITH_MATH "Build with math support" OFF)
#variable_watch(WITH_MATH)
Generate config.h from config.h.in
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/config.h.in"
"${CMAKE_CURRENT_BINARY_DIR}/config.h"

include_directories("${CMAKE_CURRENT_BINARY_DIR}")
add_executable(hello hello.c)
install(TARGETS hello

RUNTIME DESTINATION bin

)

Co3gagmm nakeT U3 3Toro UCXo04HOro Kogda ¢ nomoLbio kKomaHasl debmake.

[base_dir] $ cd debhello-1.7

[debhello-1.7] $ debmake -x1

I: debmake (version: 5.1.2)

I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>
I: [debhello-1.7] $ cd

122

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.10. CMAKE (SINGLE-BINARY PACKAGE)

. creating debian/copyright by licensecheck.

: creating debian/control from control.py

! creating debian/control by control.py

: creating debian/changelog from extra®_changelog

: creating debian/rules from extra@_rules

! creating debian/source/format from extra®@source_format

I: Non-native Debian package pkg="debhello", ver="1.7", rev="1" method="dir_d...
I: already in the package-version form: "debhello-1.7"

I: [base_dir] $ ln -sf debhello-1.7.tar.xz debhello_1.7.orig.tar.xz

I: [base_dir] $ cd debhello-1.7

I: parsing option -b ""

I: binary package=debhello Type=bin / Arch=any M-A=foreign

I: build_type = Cmake

I: ext_type = c 2 files

I: ext_type =1 1 files

I: ext_type = desktop 1 files

I: creating debian/* files with "-x 1" option

I: [debhello-1.7] $ licensecheck --recursive --copyright --deb-machine . > d...
I:

I:

I

I

I

I:

MonyuMBLUMIACA pe3y/ibTaT MNOXOX Ha To, YTO 6bI1I0 onMcaHo B «Pasgen 15.8», HO He coBnagaeT ¢
HUM B TOYHOCTW.

Let's inspect the notable template files generated.

debian/rules (wa6noHHbIN haiin, v=1.7):

[base_dir] $ cd debhello-1.7

[debhello-1.7] $ cat debian/rules

#!/usr/bin/make -f

You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)

This is an autogenerated template for debian/rules.

#

Output every command that modifies files on the build system.
#export DH_VERBOSE = 1

Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.

See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options

#export DEB_BUILD_MAINT_OPTIONS = hardening=+all

Package maintainers to append CFLAGS

#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic

Package maintainers to append LDFLAGS

#export DEB_LDFLAGS_MAINT_APPEND = -W1,-01

#
#
#
#
#
#

With debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.

These are rarely used code. (START)
The following include for *.mk magically sets miscellaneous

variables while honoring existing values of pertinent
environment variables:

HoH W HHHE W HHHE

Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk

Vendor-related variables such as DEB_VENDOR:

#include /usr/share/dpkg/vendor .mk

Package-related variables such as DEB_DISTRIBUTION

#include /usr/share/dpkg/pkg-info.mk

#

You may alternatively set them susing a simple script such as:

123

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.10. CMAKE (SINGLE-BINARY PACKAGE)

DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#

These are rarely used code. (END)

#

main packaging script based on post dh7 syntax
%
dh $@

debmake generated override targets
#override_dh_auto_configure:

dh_auto_configure -- \
-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_TARGET_MULTIARCH)"
#

You may need to patch CMakelLists.txt to set the library install path to be:...
#-install(TARGETS <sharedlibname> LIBRARY DESTINATION 1lib)
#+install(TARGETS <sharedlibname> LIBRARY DESTINATION lib/${CMAKE_LIBRARY_ARC. ..

Multiarch package requires library files to be installed to

/usr/lib/<triplet>/ . 1If the build system does not support

$(DEB_HOST_MULTIARCH), you may need to override some targets such as
dh_auto_configure or dh_auto_install to use $(DEB_HOST_MULTIARCH)

debian/control (wa6noHHbIii haiin, v=1.7):

[debhello-1.7] $ cat debian/control
Source: debhello
Section: unknown
Priority: optional
Maintainer: "Osamu Aoki" <osamu@debian.org>
Build-Depends:
debhelper-compat (= 13),
cmake,
Standards-Version: 4.7.3
Homepage: <insert the upstream URL, if relevant>
Rules-Requires-Root: no
#Vcs-Git: https://salsa.debian.org/debian/debhello.git
#Vcs-Browser: https://salsa.debian.org/debian/<project_site>

Package: debhello

Section: unknown
Architecture: any

Multi-Arch: foreign

Depends:

${misc:Depends},

${shlibs:Depends},

Description: auto-generated package by debmake

This Debian binary package was auto-generated by the
debmake (1) command provided by the debmake package.

===== This comes from the unmodified template file =====

Please edit this template file (debian/control) and other package files
(debian/*) to make them meet all the requirements of the Debian Policy
before uploading this package to the Debian archive.
See
* https://www.debian.org/doc/manuals/developers-reference/best-pkging-pract...
* https://www.debian.org/doc/manuals/debmake-doc/ch@5.en.html#control

The synopsis description at the top should be about 60 characters and
written as a phrase. No extra capital letters or a final period. No
articles b''-b'' "a", "an", or "the".

The package description for general-purpose applications should be

124

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

written for a less technical user. This means that we should avoid
jargon. GNOME or KDE is fine but GTK+ is probably not.

Use the canonical forms of words:
* Use X Window System, X11, or X; not X Windows, X-Windows, or X Window.
* Use GTK+, not GTK or gtk.
* Use GNOME, not Gnome.
* Use PostScript, not Postscript or postscript.

Cpenaem aToT nakeT Debian nyJwe.
debian/rules (Bepcua conpoBoxpatouiero, v=1.7):

[base_dir] $ cd debhello-1.7
[debhello-1.7] $ vim debian/rules
hack, hack, hack,
[debhello-1.7] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -W1, --as-needed

%
dh $@

override_dh_auto_configure:
dh_auto_configure -- -DWITH-MATH=1

debian/control (Bepcus conposxpatowiero, v=1.7):

[debhello-1.7] $ vim debian/control
hack, hack, hack,

[debhello-1.7] $ cat debian/control
Source: debhello
Section: devel

Priority: optional

Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:

debhelper-compat (= 13),

cmake,

Standards-Version: 4.7.3

Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello

Architecture: any

Multi-Arch: foreign

Depends:

${misc:Depends},
${shlibs:Depends},

Description: Simple packaging example for debmake
This Debian binary package is an example package.
(This is an example only)

B katanore debian/ nvetotcsa n gpyrue wabnoHHble daiinel. Vx Takke cnegyet 06HOBUT.
OcTasibHble paboThbl NO NOATOTOBKE MakeTa NPakTUYeCKU NOSIHOCTLIO COBMajaloT C OMUCAaHHBLIMU B
«Pa3nen 15.8».

15.11 Autotools (multi-binary package)

Here is an example of creating a set of Debian binary packages including the executable package, the
shared library package, the development file package, and the debug symbol package from a simple C

125

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

source program using Autotools (Autoconf and Automake, which use Makefile.am and configure.ac as
their input files) as its build system.

Let’s package this in a similar way to «Pa3gen 15.9».

Let's assume this upstream tarball to be debhello-2.0.tar.xz.

DTOT TUN MCXOAHOIO Koga npeanonaraeT yCTaHOBKY B BUAE HECUCTEMHOIO haiina, Hanpumep, kak

[base_dir] $ tar --xz -xmf debhello-2.0.tar.xz
[base_dir] $ cd debhello-2.0

[debhello-2.0] $ autoreconf -ivf # optional
[debhello-2.0] $./configure --with-math
[debhello-2.0] $ make

[debhello-2.0] $ make install

MonyunTmM UCXoAHbIA kog 1 co3gaamm nakeT Debian.
Download debhello-2.0.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-2.0.tar.xz

[base_dir] $ tar --xz -xmf debhello-2.0.tar.xz
[base_dir] $ tree

+-- debhello-2.0
+-- LICENSE
+-- Makefile.am
+-- README.md
+-- configure.ac
+-- data
[+-- hello.desktop
[+-- hello.png

I
I
I
I
I
I
I
I
I
| | +-- sharedlib.c
I
I
I
I
I
I
I
+

+-- lib
[+-- Makefile.am
[+-- sharedlib.h
+-- man
[+-- Makefile.am
[+-- hello.1
+-- src
+-- Makefile.am
+-- hello.c
-- debhello-2.0.tar.xz

6 directories, 14 files

Hwxe npvBoaMTCA COAEPXMMOe 3TOro apxmBa C UCXOAHbIM KOAOM.
srclhello.c (v=2.0):

[base_dir] $ cat debhello-2.0/src/hello.c
#include "config.h"

#include <stdio.h>

#include <sharedlib.h>

int

main()

{
printf("Hello, I am " PACKAGE_AUTHOR "!I\n");
sharedlib();
return 0O,

}

lib/sharedlib.h u lib/sharedlib.c (v=1.6):

[base_dir] $ cat debhello-2.0/1lib/sharedlib.h
int sharedlib();

[base_dir] $ cat debhello-2.0/1ib/sharedlib.c
#include <stdio.h>

int

126

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.11

. AUTOTOOLS (MULTI-BINARY PACKAGE)

sharedlib()

{
printf("This is a shared library!\n");
return 0O,

Makefile.am (v=2.0):

[base_dir] $ cat debhello-2.0/Makefile.am

recursively process “Makefile.am™ in SUBDIRS
SUBDIRS = 1ib src man

[base_dir] $ cat debhello-2.0/man/Makefile.am
manpages (distributed in the source package)
dist_man_MANS = hello.1

[base_dir] $ cat debhello-2.0/1ib/Makefile.am
libtool librares to be produced
1ib_LTLIBRARIES = libsharedlib. la

source files used for 1lib_LTLIBRARIES
libsharedlib_la_SOURCES = sharedlib.c

C pre-processor flags used for 1lib_LTLIBRARIES

#libsharedlib_1la_CPPFLAGS =

Headers files to be installed in <prefix>/include

include_HEADERS = sharedlib.h

Versioning Libtool Libraries with version triplets

libsharedlib_la_LDFLAGS = -version-info 1:0:0
[base_dir] $ cat debhello-2.0/src/Makefile.am
program executables to be produced
bin_PROGRAMS = hello

source files used for bin_PROGRAMS
hello_SOURCES = hello.c

C pre-processor flags used for bin_PROGRAMS
AM_CPPFLAGS = -I$(srcdir) -I$(top_srcdir)/1lib

Extra options for the linker for hello
hello_LDFLAGS =

Libraries the "hello” binary to be linked
hello_LDADD = $(top_srcdir)/1lib/libsharedlib. la

configure.ac (v=2.0):

[base_dir] $ cat debhello-2.0/configure.ac
#

-*- Autoconf -*-

Process this file with autoconf to produce a configure script.

AC_PREREQ([2.69])
AC_INIT([debhello], [2.2], [foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])
AC_CONFIG_HEADERS([config.h])

echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])

AM_INIT_AUTOMAKE([foreign])

Set default to --enable-shared --disable-static

LT_INIT([shared disable-static])

find the 1libltdl sources in the 1libltdl sub-directory

LT_CONFIG_LTDL_DIR([libltdl])

127

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

choose one
LTDL_INIT([recursive])
#LTDL_INIT([subproject])
#LTDL_INIT([nonrecursive])

Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
Checks for programs.

AC_PROG_CC

only for the recursive case
AC_CONFIG_FILES([Makefile
lib/Makefile
man/Makefile
src/Makefile])
AC_OUTPUT

Let’s use the debmake command to package this into multiple packages:
« debhello: type = bin

« libsharedlibl: type = lib

¢ libsharedlib-dev: type = dev

Here, we use the -b’libsharedlibl,libsharedlib-dev’ option to specify the additional binary packages
to be generated.

[base_dir] $ cd debhello-2.0
[debhello-2.0] $ debmake -b', libsharedlibi, libsharedlib-dev' -x1
I: debmake (version: 5.1.2)

: creating debian/copyright by licensecheck.

: creating debian/control from control.py

: creating debian/control by control.py

: creating debian/changelog from extra®_changelog

I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>

I: [debhello-2.0] $ cd

I: Non-native Debian package pkg="debhello", ver="2.0", rev="1" method="dir_d...
I: already in the package-version form: "debhello-2.0"

I: [base_dir] $ ln -sf debhello-2.0.tar.xz debhello_2.0.orig.tar.xz

I: [base_dir] $ cd debhello-2.0

I: parsing option -b ", libsharedlibi, libsharedlib-dev"

I: binary package=debhello Type=bin / Arch=any M-A=foreign

I: binary package=libsharedlibl Type=1lib / Arch=any M-A=same

I: binary package=libsharedlib-dev Type=dev / Arch=any M-A=same

I: build_type = Autotools with autoreconf

I: ext_type = am 4 files

I: ext_type = ¢ 3 files

I: ext_type =1 1 files

I: creating debian/* files with "-x 1" option

I: [debhello-2.0] $ licensecheck --recursive --copyright --deb-machine . > d...
I

I

I:

I

MonyuMBLUMIACA pe3y/bTaT NOXOX Ha To, 4YTo 6b10 onncaHo B «Pasgen 15.8», HO nmeeT 60sbluee
KO/INYECTBO Wab/A0HHbIX dhaioB.

Let's inspect the notable template files generated.

debian/rules (wa6noHHbI aiin, v=2.0):

[base_dir] $ cd debhello-2.0

[debhello-2.0] $ cat debian/rules

#!/usr/bin/make -f

You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)

This is an autogenerated template for debian/rules.

#

Output every command that modifies files on the build system.

128

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

#export DH_VERBOSE = 1

Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.

See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options

#export DEB_BUILD_MAINT_OPTIONS = hardening=+all

Package maintainers to append CFLAGS

#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic

Package maintainers to append LDFLAGS

#export DEB_LDFLAGS_MAINT_APPEND = -W1,-01

H HH HHH

with debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.

These are rarely used code. (START)
The following include for *.mk magically sets miscellaneous

variables while honoring existing values of pertinent
environment variables:

H o HE W HHHHE

Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk

Vendor-related variables such as DEB_VENDOR:

#include /usr/share/dpkg/vendor .mk

Package-related variables such as DEB_DISTRIBUTION

#include /usr/share/dpkg/pkg-info.mk

#

You may alternatively set them susing a simple script such as:
DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)

#

These are rarely used code. (END)

#

main packaging script based on post dh7 syntax
%:
dh $@ --with autoreconf

debmake generated override targets

Set options for ./configure

#CONFIGURE_FLAGS = <options for ./configure>
#overrride_dh_configure:

dh_configure -- $(CONFIGURE_FLAGS)

#

Do not install libtool archive, python .pyc .pyo
#override_dh_install:

dh_install --list-missing -X.la -X.pyc -X.pyo

Cpoenaem 3T0T nakeT Debian nyywe.
debianl/rules (Bepcus conpoBoxgatouiero, v=2.0):

[base_dir] $ cd debhello-2.0
[debhello-2.0] $ vim debian/rules
hack, hack, hack,
[debhello-2.0] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND -W1, --as-needed

%:
dh $@ --with autoreconf

129

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

override_dh_missing:
dh_missing -X.la

debian/control (Bepcusa conposoxaatouyero, v=2.0):

[debhello-2.0] $ vim debian/control
hack, hack, hack,

[debhello-2.0] $ cat debian/control
Source: debhello
Section: devel

Priority: optional

Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:

debhelper-compat (= 13),

dh-autoreconf,
Standards-Version: 4.7.3

Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
libsharedlibl (= ${binary:Version}),
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the compiled binary executable.

This Debian binary package is an example package.
(This is an example only)

Package: libsharedlib1
Section: libs
Architecture: any
Multi-Arch: same
Pre-Depends:
${misc:Pre-Depends},
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the shared library.

Package: libsharedlib-dev

Section: libdevel

Architecture: any

Multi-Arch: same

Depends:
libsharedlibl (= ${binary:Version}),
${misc:Depends},

Description: Simple packaging example for debmake
This package contains the development files.

debian/*.install (Bepcusa conposoxagatowyero, v=2.0):

[debhello-2.0] $ vim debian/copyright
hack, hack, hack,
[debhello-2.0] $ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

130

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.11. AUTOTOOLS (MULTI-BINARY PACKAGE)

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Since this upstream source creates the proper auto-generated Makefile, there is no need to create
debian/install and debian/manpages files.

B katanore debian/ nvetotcs n gpyrve wabnoHHble goaiinbl. Vx Takke cnegyet 06HOBUTD.

LLlaGoHHble haiinbl B Katasnore debian/. (v=2.0):

[debhello-2.0] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-2.0] $ rm -f debian/README.source debian/source/*.ex
[debhello-2.0] $ rm -rf debian/patches

[debhello-2.0] $ tree -F debian

debian/

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- debhello.install

+-- docs
+-- examples
+-- gbp.conf

+-- libsharedlib-dev.install
+-- libsharedlibil.install
+-- libsharedlibl.symbols
+-- manpages

+-- rules*

+-- salsa-ci.yml

+-- source/

| +-- format

+-- tests/

| +-- control

+-- upstream/

| +-- metadata

+-- watch

4 directories, 18 files

OcTtasnbHble paboTbl NO NOArOTOBKE MakeTa NPakTUYecky NOSTHOCTLIO COBNagatoT C ONUCaHHbLIMA B
«Paszgen 15.8».

Here are the generated dependency list of all binary packages.

The generated dependency list of all binary packages (v=2.0):

[debhello-2.0] $ dpkg -f debhello-dbgsym_2.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 2.0-1)

[debhello-2.0] $ dpkg -f debhello_2.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

131

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.12. CMAKE (MULTI-BINARY PACKAGE)

Depends: libsharedlibl (= 2.0-1), libc6 (>= 2.34)

[debhello-2.0] $ dpkg -f libsharedlib-dev_2.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: libsharedlibl (= 2.0-1)

[debhello-2.0] $ dpkg -f libsharedlibil-dbgsym_2.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: libsharedlibl (= 2.0-1)

[debhello-2.0] $ dpkg -f libsharedlibl_2.0-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: libc6 (>= 2.2.5)

15.12 CMake (multi-binary package)

This example demonstrates creating a set of Debian binary packages including the executable package,
the shared library package, the development file package, and the debug symbol package from a simple
C source program using CMake (CMakeLists.txt and files such as config.h.in) as its build system.
Let’'s assume this upstream tarball to be debhello-2.1.tar.xz.
DTOT TUN UCXOAHOIO Koga npeanonaraeT ycTaHOBKY B BUAE HECUCTEMHOrO (haina, Hanpumep, kak

[base_dir] $ tar --xz -xmf debhello-2.1.tar.xz
[base_dir] $ cd debhello-2.1

[debhello-2.1] $ mkdir obj-x86_64-1linux-gnu
[debhello-2.1] $ cd obj-x86_64-1inux-gnu
[debhello-2.1] $ cmake ..

[debhello-2.1] $ make

[debhello-2.1] $ make install

MonyunT™M UCXoAHbIA kog 1 co3gaamm nakeT Debian.
Download debhello-2.1.tar.xz

[base_dir] $ wget http://www.example.org/download/debhello-2.1.tar.xz

[base_dir] $ tar --xz -xmf debhello-2.1.tar.xz
[base_dir] $ tree

+-- debhello-2.1
+-- CMakelLists.txt

+-- LICENSE
+-- README.md
+-- data

I

I

I

I

| [+-- hello.desktop
| [+-- hello.png

| +-- 1lib

| [+-- CMakeLists.txt
| [+-- sharedlib.c

| | +-- sharedlib.h

| +-- man

| [+-- CMakeLists.txt
| | +-- hello.1

I

I

I

I

+

+-- CMakelLists.txt
+-- config.h.in
+-- hello.c

-- debhello-2.1.tar.xz

6 directories, 14 files
Hwxe NpuBOSUTCS COLEPXKMMOE 3TOT0 apXmBa C UCXOAHbLIM KOLOM.
srclhello.c (v=2.1):

[base_dir] $ cat debhello-2.1/src/hello.c
#include "config.h"
#include <stdio.h>

132

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.12. CMAKE (MULTI-BINARY PACKAGE)

#include <sharedlib.h>

int

main()

{
printf("Hello, I am " PACKAGE_AUTHOR "!\n");
sharedlib();
return 0;

}

srclconfig.h.in (v=2.1):

[base_dir] $ cat debhello-2.1/src/config.h.in
/* name of the package author */
#define PACKAGE_AUTHOR "@PACKAGE_AUTHOR@"

lib/sharedlib.c u lib/sharedlib.h (v=2.1):

[base_dir] $ cat debhello-2.1/1ib/sharedlib.h
int sharedlib();

[base_dir] $ cat debhello-2.1/1ib/sharedlib.c
#include <stdio.h>

int

sharedlib()

{
printf("This is a shared library!\n");
return 0O,

}

CMakelL.ists.txt (v=2.1):

[base_dir] $ cat debhello-2.1/CMakeLists.txt
cmake_minimum_required(VERSION 3.31)
project(debhello)
set (PACKAGE_AUTHOR "Osamu Aoki")
add_subdirectory(1lib)
add_subdirectory(src)
add_subdirectory(man)
[base_dir] $ cat debhello-2.1/man/CMakelLists.txt
install(
FILES ${CMAKE_CURRENT_SOURCE_DIR}/hello.1
DESTINATION share/man/manl
)
[base_dir] $ cat debhello-2.1/src/CMakeLists.txt
Always define HAVE_CONFIG_H
add_definitions(-DHAVE_CONFIG_H)
Generate config.h from config.h.in
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/config.h.in"
"${CMAKE_CURRENT_BINARY_DIR}/config.h"

include_directories("${CMAKE_CURRENT_BINARY_DIR}")
include_directories("${CMAKE_SOURCE_DIR}/1ib")

add_executable(hello hello.c)
target_link_libraries(hello sharedlib)
install(TARGETS hello

RUNTIME DESTINATION bin

)

Co3gaanm nakeT M3 3TOro MCXOAHOro Kofa ¢ noMoubio komaHabl debmake.

[base_dir] $ cd debhello-2.1

[debhello-2.1] $ debmake -b', libsharedlibl, libsharedlib-dev' -x1
I: debmake (version: 5.1.2)

I: Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>

I: [debhello-2.1] $ cd

133

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.12. CMAKE (MULTI-BINARY PACKAGE)

: creating debian/copyright by licensecheck.

. creating debian/control from control.py

: creating debian/control by control.py

: creating debian/changelog from extra®_changelog

I: Non-native Debian package pkg="debhello", ver="2.1", rev="1" method="dir_d...
I: already in the package-version form: "debhello-2.1"

I: [base_dir] $ ln -sf debhello-2.1.tar.xz debhello_2.1.o0rig.tar.xz

I: [base_dir] $ cd debhello-2.1

I: parsing option -b ", libsharedlibi1, libsharedlib-dev"

I: binary package=debhello Type=bin / Arch=any M-A=foreign

I: binary package=libsharedlibl Type=1ib / Arch=any M-A=same

I: binary package=libsharedlib-dev Type=dev / Arch=any M-A=same

I: build_type = Cmake

I: ext_type = ¢ 4 files

I: ext_type =1 1 files

I: ext_type = desktop 1 files

I: creating debian/* files with "-x 1" option

I: [debhello-2.1] $ licensecheck --recursive --copyright --deb-machine . > d...
I

I

I

I:

MonyuMBLUMIACA pe3y/ibTaT MNOXOX Ha To, YTO 6bI1I0 onMcaHo B «Pasgen 15.8», HO He coBnagaeT ¢
HUM B TOYHOCTW.

Let's inspect the notable template files generated.

debian/rules (wa6noHHbIN haiin, v=2.1):

[base_dir] $ cd debhello-2.1

[debhello-2.1] $ cat debian/rules

#!/usr/bin/make -f

You must remove unused comment lines for the released package.
See debhelper(7) (un-comment to enable)

This is an autogenerated template for debian/rules.

#

Output every command that modifies files on the build system.
#export DH_VERBOSE = 1

Copy some variable definitions from pkg-info.mk and vendor.mk
under /usr/share/dpkg/ to here if they are useful.

See FEATURE AREAS/ENVIRONMENT in dpkg-buildflags(1)
Apply all hardening options

#export DEB_BUILD_MAINT_OPTIONS = hardening=+all

Package maintainers to append CFLAGS

#export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic

Package maintainers to append LDFLAGS

#export DEB_LDFLAGS_MAINT_APPEND = -W1,-01

#
#
#
#
#
#

With debhelper version 9 or newer, the dh command exports
all buildflags. So there is no need to include the
/usr/share/dpkg/buildflags.mk file here if compat is 9 or newer.

These are rarely used code. (START)
The following include for *.mk magically sets miscellaneous

variables while honoring existing values of pertinent
environment variables:

HoH W HHHE W HHHE

Architecture-related variables such as DEB_TARGET_MULTIARCH:
#include /usr/share/dpkg/architecture.mk

Vendor-related variables such as DEB_VENDOR:

#include /usr/share/dpkg/vendor .mk

Package-related variables such as DEB_DISTRIBUTION

#include /usr/share/dpkg/pkg-info.mk

#

You may alternatively set them susing a simple script such as:

134

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.12. CMAKE (MULTI-BINARY PACKAGE)

DEB_VENDOR ?= $(shell dpkg-vendor --query Vendor)
#

These are rarely used code. (END)

#

main packaging script based on post dh7 syntax
%
dh $@

debmake generated override targets
#override_dh_auto_configure:

dh_auto_configure -- \
-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_TARGET_MULTIARCH)"
#

You may need to patch CMakelLists.txt to set the library install path to be:...
#-install(TARGETS <sharedlibname> LIBRARY DESTINATION 1lib)
#+install(TARGETS <sharedlibname> LIBRARY DESTINATION lib/${CMAKE_LIBRARY_ARC. ..

Multiarch package requires library files to be installed to

/usr/lib/<triplet>/ . 1If the build system does not support

$(DEB_HOST_MULTIARCH), you may need to override some targets such as
dh_auto_configure or dh_auto_install to use $(DEB_HOST_MULTIARCH)

Cpenaewm atoT nakeT Debian nyuwe.
debianl/rules (Bepcusa conpoBoxgatouiero, v=2.1):

[base_dir] $ cd debhello-2.1
[debhello-2.1] $ vim debian/rules
hack, hack, hack,
[debhello-2.1] $ cat debian/rules
#!/usr/bin/make -f
export DH_VERBOSE = 1
export DEB_BUILD_MAINT_OPTIONS = hardening=+all
export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
export DEB_LDFLAGS_MAINT_APPEND = -W1l, --as-needed
DEB_HOST_MULTIARCH ?= $(shell dpkg-architecture -qDEB_HOST_MULTIARCH)

%
dh $@

override_dh_auto_configure:
dh_auto_configure -- \
-DCMAKE_LIBRARY_ARCHITECTURE="$(DEB_HOST_MULTIARCH)"

debian/control (Bepcusa conpoBoxgatowiero, v=2.1):

[debhello-2.1] $ vim debian/control
hack, hack, hack,

[debhello-2.1] $ cat debian/control
Source: debhello
Section: devel

Priority: optional

Maintainer: Osamu Aoki <osamu@debian.org>
Build-Depends:

debhelper-compat (= 13),

cmake,
Standards-Version: 4.7.3

Homepage: https://salsa.debian.org/debian/debmake-doc
Rules-Requires-Root: no

Package: debhello
Architecture: any
Multi-Arch: foreign
Depends:
libsharedlibl (= ${binary:Version}),

135

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.12. CMAKE (MULTI-BINARY PACKAGE)

${misc:Depends},

${shlibs:Depends},

Description: Simple packaging example for debmake
This package contains the compiled binary executable.

This Debian binary package is an example package.
(This is an example only)

Package: libsharedlibl
Section: libs
Architecture: any
Multi-Arch: same
Pre-Depends:
${misc:Pre-Depends},
Depends:
${misc:Depends},
${shlibs:Depends},
Description: Simple packaging example for debmake
This package contains the shared library.

Package: libsharedlib-dev

Section: libdevel

Architecture: any

Multi-Arch: same

Depends:
libsharedlibl (= ${binary:Version}),
${misc:Depends},

Description: Simple packaging example for debmake
This package contains the development files.

debian/*.install (Bepcusa conposoxaatoiiero, v=2.1):

[debhello-2.1] $ vim debian/copyright
hack, hack, hack,
[debhello-2.1] $ cat debian/copyright
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: debhello
Upstream-Contact: Osamu Aoki <osamu@debian.org>
Source: https://salsa.debian.org/debian/debmake-doc

Files: *
Copyright: 2015-2021 Osamu Aoki <osamu@debian.org>
License: Expat

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The upstream CMakelLists.txt file needs to be patched to handle the multiarch path correctly.
debian/patches/* (Bepcus conpoBoxgatouiero, v=2.1):

hack, hack, hack,

136

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.12. CMAKE (MULTI-BINARY PACKAGE)

[debhello-2.1] $ cat debian/libsharedlibl.symbols
libsharedlib.so.1 libsharedlibl #MINVER#
sharedlib@Base 2.1

Since this upstream source creates the proper auto-generated Makefile, there is no need to create
debian/install and debian/manpages files.

B katanore debian/ nvetotcs n gpyrve wabnoHHble goaiinbl. Vx Takke cnegyet 06HOBUTD.

LLla6noHHbIe haiinbl B Katanore debian/. (v=2.1):

[debhello-2.1] $ rm -f debian/clean debian/dirs debian/install debian/links
[debhello-2.1] $ rm -f debian/README.source debian/source/*.ex
[debhello-2.1] $ tree -F debian

debian/

+-- README.Debian

+-- changelog

+-- control

+-- copyright

+-- debhello.install

+-- docs
+-- examples
+-- gbp.conf

+-- libsharedlib-dev.install
+-- libsharedlibil.install
+-- libsharedlibl.symbols
+-- manpages

+-- patches/

| +-- 000-cmake-multiarch.patch
| +-- series

+-- rules*

+-- salsa-ci.yml

+-- source/

| +-- format

+-- tests/

| +-- control

+-- upstream/

| +-- metadata

+-- watch

5 directories, 20 files

OcTasibHble paboTbl N0 NOAFOTOBKE MakeTa NpPakTUYecKn MOSIHOCTbI0 COBNAaAatdT C ONUCAaHHbIMU B
«Pa3gen 15.8».

Here are the generated dependency list of all binary packages.

The generated dependency list of all binary packages (v=2.1):

[debhello-2.1] $ dpkg -f debhello-dbgsym_2.1-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: debhello (= 2.1-1)

[debhello-2.1] $ dpkg -f debhello_2.1-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: libsharedlibl (= 2.1-1), 1libc6 (>= 2.34)

[debhello-2.1] $ dpkg -f libsharedlib-dev_2.1-1_amdé4.deb pre-depends \
depends recommends conflicts breaks

Depends: libsharedlibl (= 2.1-1)

[debhello-2.1] $ dpkg -f libsharedlibi1-dbgsym_2.1-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: libsharedlibl (= 2.1-1)

[debhello-2.1] $ dpkg -f libsharedlibl_2.1-1_amd64.deb pre-depends \
depends recommends conflicts breaks

Depends: 1ibc6é (>= 2.2.5)

137

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI

15.13 WHTepHauyuoHannsauus

Here is an example of updating the simple upstream C source debhello-2.0.tar.xz presented in «Pa3-
Aen 15.11» for internationalization (i18n) and creating the updated upstream C source debhello-2.0.tar.xz.
In the real situation, the package should already be internationalized. So this example is educational

for you to understand how this internationalization is implemented.

Moackaska

The routine maintainer activity for the i18n is simply to add translation po files
= reported to you via the Bug Tracking System (BTS) to the pol directory and to

update the language list in the po/LINGUAS file.

MonyunTM MCXOAHbIA Kog 1 co3gaamm naket Debian.
Download debhello-2.0.tar.xz (i18n)

[base_dir] $ wget http://www.example.org/download/debhello-2.0.tar.xz

[base_dir] $ tar --xz -xmf debhello-2.0.tar.xz
[base_dir] $ tree

+-- debhello-2.0

hello.c

| +-- LICENSE

| +-- Makefile.am

| +-- README.md

| +-- configure.ac

| +-- data

| [+-- hello.desktop
| [+-- hello.png

| +-- 1lib

| [+-- Makefile.am
| [+-- sharedlib.c
| | +-- sharedlib.h
| +-- man

| [+-- Makefile.am
| | +-- hello.1

| +-- src

| +-- Makefile.am
I

+

-- debhello-2.0.tar.xz

6 directories, 14 files

Internationalize this source tree with the gettextize command and remove files auto-generated by

Autotools.

3anycTtum gettextize (i18n):

[base_dir] $ cd debhello-2.0

$ gettextize

Creating po/ subdirectory

Creating build-aux/ subdirectory
Copying file ABOUT-NLS

Copying file build-aux/config.rpath
Not copying intl/ directory.

Copying
Copying
Copying
Copying
Copying
Copying
Copying
Copying

file
file
file
file
file
file
file
file

po/Makefile.in.in
po/Makevars.template
po/Rules-quot
po/boldquot.sed
po/en@boldquot.header
po/en@quot . header
po/insert-header.sin
po/quot.sed

138

15.13. MHTEPHALUWOHA/IN3ALWA

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI

15.13. MHTEPHALUWOHA/IN3ALWA

Copying file po/remove-potcdate.sin
Creating initial po/POTFILES.in

Creating po/ChangelLog
Creating directory m4
m4/gettext.m4

Copying
Copying
Copying
Copying
Copying
Copying
Copying
Copying
Creating
Updating
Updating
Creating

file
file
file
file
file
file
file
file

m4/iconv.m4
m4/1ib-1d.m4

m4/1ib-1link.m4
m4/1lib-prefix.m4
m4/nls.m4

m4/po.

m4

m4/progtest.m4
m4/ChangelLog
Makefile.am (backup is in Makefile.am~)

configure.ac (backup is in configure.ac~)
Changelog

Please use AM_GNU_GETTEXT([external]) in order to cause autoconfiguration
to look for an external libintl.

Please create po/Makevars from the template in po/Makevars.template.

You can then remove po/Makevars.template.

Please fill po/POTFILES.in as described in the documentation.

Please run 'aclocal' to regenerate the aclocal.m4 file.
You need aclocal from GNU automake 1.9 (or newer) to do this.
Then run 'autoconf' to regenerate the configure file.

You will also need config.guess and config.sub, which you can get from the CV...
of the 'config' project at http://savannah.gnu.org/. The commands to fetch th...

are

$ wget 'http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/conf...
$ wget 'http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/conf...

You might also want to copy the convenience header file gettext.h
from the /usr/share/gettext directory into your package.
It is a wrapper around <libintl.h> that implements the configure --disable-nl...

option.

Press Return to acknowledge the previous 6 paragraphs.
[debhello-2.0] $ rm -rf m4 build-aux *~

MpoBepuM co3gaHHble doaiisbl B kaTtasiore pol.

chaiinbl B kKatanore po (i18n):

[debhello-2.0] $ 1ls -1 po

total 60
-rW-rw-r
-rW-rw-r
-rW-rw-r
-rW-rw-r
-rW-rw-r
-rW-rw-r
-rW-rw-r
-rW-rw-r
-rW-rw-r
-rW-rw-r
-rW-rw-r

RRrRRRRRRRRRR

osamu
osamu
osamu
osamu
osamu
osamu
osamu
osamu
osamu
osamu
osamu

osamu
osamu
osamu
osamu
osamu
osamu
osamu
osamu
osamu
osamu
osamu

494
17577
3376
59
2203
217
1337
1203
672
153
432

Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb

WWWwWwwWwwwwowww

08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:

57
57
57
57
57
57
57
57
57
57
57

ChangelLog
Makefile.in.in
Makevars.template
POTFILES.in
Rules-quot
boldquot.sed
en@boldquot.header
en@quot.header
insert-header.sin
quot.sed
remove-potcdate.sin

Let's update the configure.ac by adding «<xAM_GNU_GETTEXT([external])», etc..
configure.ac (i18n):

[debhello-2.0] $ vim configure.ac
hack, hack, hack,

139

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.13. MHTEPHALUWOHA/IN3ALWA

[debhello-2.0] $ cat configure.ac

-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ([2.69])

AC_INIT([debhello], [2.2], [foo@example.org])
AC_CONFIG_SRCDIR([src/hello.c])

AC_CONFIG_HEADERS([config.h])

echo "Standard customization chores"
AC_CONFIG_AUX_DIR([build-aux])

AM_INIT_AUTOMAKE ([foreign])

Set default to --enable-shared --disable-static
LT_INIT([shared disable-static])

find the 1libltdl sources in the 1libltdl sub-directory
LT_CONFIG_LTDL_DIR([libltdl])

choose one
LTDL_INIT([recursive])
#LTDL_INIT([subproject])
#LTDL_INIT([nonrecursive])

Add #define PACKAGE_AUTHOR ... in config.h with a comment
AC_DEFINE(PACKAGE_AUTHOR, ["Osamu Aoki"], [Define PACKAGE_AUTHOR])
Checks for programs.

AC_PROG_CC

desktop file support required
AM_GNU_GETTEXT_VERSION([0.19.3])
AM_GNU_GETTEXT([external])

only for the recursive case
AC_CONFIG_FILES([Makefile
po/Makefile.in
lib/Makefile
man/Makefile
src/Makefile])
AC_OUTPUT

Let’s create the po/Makevars file from the po/Makevars.template file.
pol/Makevars (i18n):

hack, hack, hack,
[debhello-2.0] $ diff -u po/Makevars.template po/Makevars
--- po/Makevars.template 2026-02-03 08:57:47.107232138 +0000
+++ po/Makevars 2026-02-03 08:57:47.188342050 +0000
@@ -18,14 +18,14 @@
or entity, or to disclaim their copyright. The empty string stands for
the public domain; in this case the translators are expected to disclaim
their copyright.
-COPYRIGHT_HOLDER
+COPYRIGHT_HOLDER

Free Software Foundation, Inc.
Osamu Aoki <osamu@debian.org>

This tells whether or not to prepend "GNU " prefix to the package

name that gets inserted into the header of the $(DOMAIN).pot file.
Possible values are "yes", "no", or empty. If it is empty, try to
detect it automatically by scanning the files in $(top_srcdir) for
"GNU packagename" string.

-PACKAGE_GNU =

+PACKAGE_GNU = no

H* B H H

This is the email address or URL to which the translators shall report
bugs in the untranslated strings:

140

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.13. MHTEPHALUWOHA/IN3ALWA

[debhello-2.0] $ rm po/Makevars.template

Let's update C sources for the i18n version by wrapping strings with _(...).
srclhello.c (i18n):

. hack, hack, hack,
[debhello-2.0] $ cat src/hello.c
#include "config.h"

#include <stdio.h>

#include <sharedlib.h>

#include <libint1l.h>

#define _(string) gettext (string)

int

main()

{
printf(_("Hello, I am " PACKAGE_AUTHOR "!\n"));
sharedlib();
return 0;

}

lib/sharedlib.c (i18n):

. hack, hack, hack,
[debhello-2.0] $ cat lib/sharedlib.c
#include <stdio.h>
#include <libint1l.h>
#define _(string) gettext (string)

int

sharedlib()

{
printf(_("This is a shared library!\n"));
return 0;

}

The new gettext (v=0.19) can handle the i18n version of the desktop file directly.
data/hello.desktop.in (i18n):

[debhello-2.0] $ fgrep -v '[ja]=' data/hello.desktop > data/hello.desktop.in
[debhello-2.0] $ rm data/hello.desktop
[debhello-2.0] $ cat data/hello.desktop.in
[Desktop Entry]

Name=Hello

Comment=Greetings

Type=Application

Keywords=hello

Exec=hello

Terminal=true

Icon=hello.png

Categories=Utility;

MprBeAéM CnMCOK BXOAHbIX (daiinioB A1 3BneyeHns nepesogHbix cTpok B po/POTFILES.in.
po/POTFILES.in (i18n):

. hack, hack, hack,
[debhello-2.0] $ cat po/POTFILES.in
src/hello.c
lib/sharedlib.c
data/hello.desktop.1in

Here is the updated root Makefile.am with po added to the SUBDIRS environment variable.
Makefile.am (i18n):

[debhello-2.0] $ cat Makefile.am
recursively process “Makefile.am™ in SUBDIRS
SUBDIRS = po lib src man

141

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.13. MHTEPHALUWOHA/IN3ALWA

ACLOCAL_AMFLAGS = -I m4
EXTRA_DIST = build-aux/config.rpath m4/ChangelLog

Let's make a translation template file, debhello.pot.
poldebhello.pot (i18n):

[debhello-2.0] $ xgettext -f po/POTFILES.in -d debhello -o po/debhello.pot -k...
[debhello-2.0] $ cat po/debhello.pot

SOME DESCRIPTIVE TITLE.

Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER

This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.

#

#, fuzzy

mSgld nn

msgstr ""

"Project-Id-Version: PACKAGE VERSION\n"

"Report-Msgid-Bugs-To: \n"

"POT-Creation-Date: 2026-02-03 08:57+0000\n"

"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"

"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"

"Language-Team: LANGUAGE <LL@1li.org>\n"

"Language: \n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=CHARSET\n"

"Content-Transfer-Encoding: 8bit\n"

#: src/hello.c:9

#, c-format

msgid "Hello, I am "
msgstr ""

#: lib/sharedlib.c:7

#, c-format

msgid "This is a shared library!\n"
msgstr ""

#: data/hello.desktop.in:2
msgid "Hello"
msgstr ""

#: data/hello.desktop.in:3
msgid "Greetings"
msgstr ""

#: data/hello.desktop.in:5
msgid "hello"
msgstr ""

Let's add a translation for French.
po/LINGUAS u polfr.po (i18n):

[debhello-2.0] $ echo 'fr' > po/LINGUAS
[debhello-2.0] $ cp po/debhello.pot po/fr.po
[debhello-2.0] $ vim po/fr.po
hack, hack, hack,
[debhello-2.0] $ cat po/fr.po
SOME DESCRIPTIVE TITLE.
This file is put in the public domain.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
msgid nn
msgstr ""
"Project-Id-Version: debhello 2.2\n"

142

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.14. JETA/IN

"Report-Msgid-Bugs-To: foo@example.org\n"
"POT-Creation-Date: 2015-03-01 20:22+0900\n"
"PO-Revision-Date: 2015-02-21 23:18+0900\n"
"Last-Translator: Osamu Aoki <osamu@debian.org>\n"
"Language-Team: French <LL@li.org>\n"

"Language: ja\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"

#: src/hello.c:34

#, c-format

msgid "Hello, my name is %s!\n"
msgstr "Bonjour, je m'appelle %s!\n"

#: lib/sharedlib.c:29

#, c-format

msgid "This is a shared library!\n"

msgstr "Ceci est une bibliotheque partagée!\n"

#: data/hello.desktop.in:3
msgid "Hello"
msgstr ""

#: data/hello.desktop.in:4
msgid "Greetings"
msgstr "Salutations"

#: data/hello.desktop.in:6
msgid "hello"
msgstr ""

#: data/hello.desktop.in:9
msgid "hello.png"
msgstr ""

Pa6oTa Haj NOAroTOBKOW NakeTa MpakTWYecKU MOSHOCTHLI0 COBNajaeT ¢ TeM, YTO ONMCLIBAETCH B
«Pa3gen 15.11».
You can find more i18n examples by following «Pa3gen 15.14».

15.14 [Oetanu

You can obtain detailed information about the examples presented and their variants as follows:
Kak nonyunTtb getanu

[base_dir] $ apt-get source debmake-doc
[base_dir] $ cd debmake-doc*
[debmake-doc-*] $ view examples/README.md

Follow the exact instruction in examples/README.md.

[debmake-doc-*] $ cd examples
[examples] $ make

Now, each directory named as examples/debhello-?.?_build-? contains the Debian packaging example.
* 3MY/IMPOBAHHbII XXypHaN akTUBHOCTM KOMaHAHOW CTPOKW KOoHconu: chaiin .log

* 3MY/IMPOBAHHbII XXypHa akTUBHOCTM KOMaHHOW CTPOKM KOHCOM (KOPOTKuiA): chaiin .slog

e cpes obpasa fepesBa UCXOAHOro Kofa rnocse BbinosiHeHnsa komaHabl debmake: katanor debmake

* snapshot source tree image after proper packaging: the package directory

* cpe3 obpasa gepeBa MCXOAHOro Kofaa nocse BbiNosHeHnss komaHabl debuild: kaTanor test

143

[7IABA 15. AOlNO/THUTE/IbHBIE MNMPVIMEPHEI 15.14. JETA/IN

Notable examples include:

L]

POSIX shell script with Makefile and i18n support (v=3.0)
¢ C source with Makefile.in + configure and i18n support (v=3.2)
¢ C source with Autotools and i18n support (v=3.3)

« C source with CMake and i18n support (v=3.4)

144

FnaBa 16

CtpaHuua pykosoactBa debmake(1)

16.1 HA3BAHUE

debmake - program to make a Debian source package

16.2 CUMHTAKCUC

debmake [-h] [-n] [-p package] [-u version] [-r revision] [-z extension] [-b "binarypackage[:type], ...]" [-D
value] [-e foo@example.org] [-f "firsthame lastname”] [-i [debuild|sbuild|dgit sbuild|gbp buildpackage|dpkg-
buildpackage| ...]] [-m] [-q] [-V] [-V] [-w "addon, ..."] [-x [01234]] [-y] [-B] [URL]

16.3 OINNCAHUE

debmake helps to build the Debian package from the upstream source.
Normally, this is done as follows:

* The upstream source is obtained as a tarball from a remote web site or a cloned work tree using
«git clone».

- For a tarball, it is expanded to many files in the source directory.
- For a cloned work tree, it is used as the source directory.

« debmake is typically invoked in the source directory without any argument.

The source directory is copied to ../package-version/ directory.

If ../package_version.orig.tar.xz is missing, it is generated.
The current directory is moved to ../package-version/.

Template files are generated in the ../package-versionldebian/ directory
« Files in the ../package-versionldebian/ directory should be manually adjusted.

« dpkg-buildpackage (usually from its wrapper debuild, sbuild, ...) is invoked in the ../package-
version/ directory to make Debian source and binary packages.

Also, debmake can be invoked with an argument. This argument can be URL for a tarball hosted
on a remote web site or for a source code accessed by «git clone»; or local PATH to the tarball or the
source code.

Arguments to -b, -f, and -w options need to be quoted to protect them from the shell.

Other tools also offer ways to obtain the upstream tarball and creating required symlink to build a
Debian package depending on your workflow. For example, origtargz, mk-origtargz, git-deborig, and
pristine-tar.

145

[7IABA 16. CTPAHVILJA PYKOBO/CTBA ... 16.4. POSITIONAL ARGUMENTS

16.4 Positional arguments

URL acquire the source tree from the tarball, the git repository or the source tree at this URL (or PATH)
(if missing, the source tree uses the current directory)

16.5 Options

-h, --help show this help message and exit
-n, --native make a native source package without .orig.tar.xz
-p, --package package set the Debian package name

-u, --upstreamversion version setthe upstream package version ("@” in version is replaced by "0~yymmddHHMM”
timestamp)

-, --revision revision setthe Debian package revision ("@” in revision is replaced by "0~yymmddHHMM”
timestamp)

-z, --tarz extension setthe tarball compression type for the missing upstream tarball, extension=(tar.xz|tar.gz|tar.bz2
(alias: z, b, x)

-b, --binaryspec ”binarypackage[:type], ...” setthe binary package specs by a comma separated list
of binarypackage:type pairs. Here, binarypackage is the binary package name, and the optional
type is chosen from the following type values:

* bin: C/C++ compiled ELF binary code package (any, foreign) (default, alias: ””, i.e., null-
string)
« data: Data (fonts, graphics, ...) package (all, foreign) (alias: da)
 dev: nakeT c 6ubnmoTekoii pazpaboTkm (any, same) (ncesaoHum: de)
» doc: naket gokymeHtauuu (all, foreign) (ncesgoHum: do)
* lib: naket c 6ubnmoTekoii (any, same) (ncesgoHum: I)
« perl: naket co cueHapuem Ha a3bike Perl (all, foreign) (ncespoHum: pl)
« python3: Python (version 3) script package (all, foreign) (alias: py3, python, py)
« ruby: nakeT co cueHapuem Ha si3bike Ruby (all, foreign) (ncesgoHnm: rb)
» nodejs: Node.js based JavaScript package (all, foreign) (alias: js)
« script: Shell and other interpreted language script package (all, foreign) (alias: sh)
The pair values in the parentheses, such as (any, foreign), are the Architecture and Multi-Arch

stanza values set in the debian/control file. In many cases, the debmake command makes good
guesses for type from binarypackage. If type is not obvious, type is set to bin.

Here are examples for typical binary package split scenarios where the upstream Debian source
package name is foo:
» Generating an executable binary package foo:
- «-b’foo:bin’», or its short form «-b’-’», or no -b option
» Generating an executable (python3) binary package python3-foo:
- «-b’python3-foo:py’», or its short form «-b’python3-foo’»
» Generating a data package foo:
- «-b’foo:data’», or its short form «-b’-:data’»
» Generating a executable binary package foo and a documentation one foo-doc:
- «-b’foo:bin,foo-doc:doc’», or its short form «-b’-:-doc’»

» Generating a executable binary package foo, a library package libfool, and a library development
package libfoo-dev:

146

[7IABA 16. CTPAHVILJA PYKOBO/CTBA ... 16.6. TIPUUMEPbI

- «-b’foo:bin,libfool:lib,libfoo-dev:dev’» or its short form «-b’-,libfool,libfoo-dev’»

Ecnu cogepxnmoe gepesa UCXo4HOro Kofa He CoBMnagaeT ¢ HacTpolikamm Noas mur, TO KomaHaa
debmake BbIBOANT NpeaynpexaeHve.

-e, --email foo@example.org set e-mail address
Mo ymonuaHuto 6epeTcs 3HaYeHe nepemeHHol okpyxxeHnss SDEBEMAIL.

-D, --debug value set DEBUG environment variable to value for debug logging (substring of "spPd”,
use "_" to unset DEBUG)

-f, --fullname ”firstname lastname” set the fullname
Mo ymonuaHuo 6epéTcs 3HayeHne nepemeHHon okpyxeHmns SDEBFULLNAME.

-i, --invoke [debuild|sbuild|dgit sbuild|gbp buildpackage|dpkg-buildpackage| ...] invoke package build
tool

-m, --monoarch force packages to be non-multiarch

-q, --quitearly quit early before creating files in the debian directory
-v, --version show version information

-V, --verbose use --verbose for shell commands if available

-w, --with ”"addon ...” set additional «dh --with» option arguments in debian/rules

For Autotools based packages, if they install Python (version 3) programs, setting python3 as
addon to the debmake command argument is needed since this is non-obvious. But for pyproject.toml
based Python packages, setting python3 as addon to the debmake command argument is not
needed since this is obvious and the debmake command automatically set it to the dh(1) command.

-X, --extra [01234] generate extra configuration files as templates (default: 2)

Please note debian/changelog, debian/control, debian/copyright, debian/rules, and debian/source/format
are required configuration files to build a modern Debian binary package.

The number determines which configuration templates are generated.
« -x0: all 5 required configuration template files. (selected option if any of these required files
already exist)

» -x1: all -x0 files + desirable configuration template files with binary package type supports.

» -x2: all -x1 files + normal configuration template files with maintainer script supports. (default)

» -x3: all -x2 files + optional configuration template files.

» -x4: all -x3 files + deprecated configuration template files.

Some configuration template files are generated with the extra .ex suffix to ease their removal.

To activate these, rename their file names to the ones without the .ex suffix and edit their contents.
Existing configuration files are never overwritten. If you wish to update some of the existing configuration

files, please rename them before running the debmake command and manually merge the generated
configuration files with the old renamed ones.

-y, --yes use once to «force yes» for all prompts, twice to «force no»

-B, --backup keep the user editted ones without .ex suffix and create template files with .ex suffix

16.6 NMPUMEPbI

For a well behaving source, you can build a good-for-local-use installable single Debian binary package
easily with one command. Test install of such a package generated in this way offers a good alternative to
the traditional «xmake install» command installing into the lusr/local directory since the Debian package
can be removed cleanly by the «dpkg -P '..."» command. Here are some examples of how to build such
test packages.

For a typical C program source tree packaged with autoconf/automake:

147

[7IABA 16. CTPAHVILJA PYKOBO/CTBA ... 16.7. BCTIOMOIATE/IbHBIE MNAKETbI

« debmake -i sbuild

For a typical Python (version 3) module source tree:

« debmake -b”:python3” -i shuild

For a typical Python (version 3) module in the package-version.tar.xz archive:
« debmake package-version.tar.xz -b”:python3” -i sbuild

For a typical Perl module in the package-version.tar.xz archive:

« debmake package-version.tar.xz -b”:perl” -i sbuild

16.7 BCIMNOMOI'ATE/IbHbIE NMAKETbI

Ansa pa6OTbI Haj naketaMmm MOXeT I'IOTpe6OBaTbCﬂ yCTaHOBKa HEKOTOPbLIX AONO/THUTE/IbHbLIX cneunann-
31POBaHHbIX BCroOMOrare/ibHbIX NakeToB.

¢ Python (version 3) programs may require the pybuild-plugin-pyproject package.

The Autotools (autoconf + automake) build system may require autotools-dev or dh-autoreconf
package.

* Ruby programs may require the gem2deb package.

* Node.js based JavaScript programs may require the pkg-js-tools package.

« Java programs may require the javahelper package.

e [ina nporpamm Ans okpy>xeHnss Ghnome MOXeT noTpebosatbcs nakeT gobject-introspection.

*UT A

16.8 TNMPEAOCTEPEXEHUNA

Although debmake is meant to provide template files for the package maintainer to work on, actual
packaging activities are often performed without using debmake while referencing only existing similar
packages and «Debian Policy Manual». All template files generated by debmake are required to be
modified manually.

There are some points for debmake:

« debmake helps to write terse packaging tutorial «Guide for Debian Maintainers» (debmake-doc
package).

« debmake provides short extracted license texts as debian/copyright in decent accuracy to help
license review.

¢ «Guide for Debian Maintainers» also serves as a tutorial with examples for the usage of debmake.

« debmake internally calls licensecheck from the licensecheck package to create debian/copyright
if it doesn’t exist.

« debmake internally calls Irc from the licenserecon package to verify debian/copyright if it already
exists.

There are some limitations for what characters may be used as a part of the Debian package. The
most notable limitation is the prohibition of uppercase letters in the package name. Here is a summary
as a set of regular expressions:

¢ Upstream package name (-p): [-+.a-z0-9]{2, }
¢ Binary package name (-b): [-+.a-z0-9]{2, }
e Upstream version (-u): [0-9][-+.:~a-z0-9A-Z]*

148

https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/manuals/debmake-doc/

[7IABA 16. CTPAHVILJA PYKOBO/CTBA ... 16.9. OT/IALAKA

¢ Debian revision (-r): [0-9][+.~a-z0-9A-Z]*

See the exact definition in «Chapter 5 - Control files and their fields» in the «Debian Policy Manual».
debmake assumes relatively simple packaging cases. So all programs related to the interpreter are
assumed to be «Architecture: all». This is not always true.

16.9 OT/NALKA

Coo6LleHunst 06 olmnbKax OTNpaB/AnTe C NOMOLBLI KOMaHAbl reportbug ans naketa debmake.
Ha6op crmBonioB B nepemeHHol okpyxeHu $SDEBUG onpegenseT ypoBeHb BbIBOAA XypHana.

¢ s: program progress logging
« p: key para]..] value logging

e P: all para[..] value logging

« d: para[’debs”] value logging
Use this feature as:

[base_dir] $ export DEBUG=spd; debmake ...

or

[base_dir] $ debmake -D spd ...

See README.md in the source for more.

16.10 ABTOP

Copyright © 2014-2026 Osamu Aoki <osamu@debian.org>

16.11 JTUMUEH3UA

Nnuensna Expat

16.12 CMOTPUTE TAKXE

The debmake-doc package provides the «Guide for Debian Maintainers» in plain text, HTML and PDF
formats under the lusrishare/doc/debmake-doc/ directory.

See also licensecheck(1), Irc(1), dpkg-source(1), deb-control(5), debhelper(7), dh(1), dpkg-buildpackage(1),
debuild(1), quilt(1), dpkg-depcheck(1), sbuild(1), gbp-buildpackage(1), and gbp-pq(1) manpages.

149

https://www.debian.org/doc/debian-policy/#document-ch-controlfields
mailto:osamu@debian.org
https://www.debian.org/doc/manuals/debmake-doc/

fnaBa 17

debmake options

Here are some additional explanations for debmake options.

17.1 Shortcut option (-i)

The debmake command offers a shortcut option.
* -i : BbINO/IHUTb CLeHapwuii 415 cO0pKM ABONYHOIO NakeTa

[LelicTBna us npumepa, NpMBEAEHHOTO Bbile B «[NaBa 5», MOXHO BbINO/THUTL C MOMOLLbIO C/eAyto-
LLein NPOCTOW KOMaHAbI.

[base_dir] $ debmake package-1.0.tar.xz -i debuild

Moackaska

A URL such as «https:/lwww.example.org/DL/package-1.0.tar.xz» for a
ISy tarball, «https:llgithub.com/usernamelpackage.git» for a git repository, or

«Ipathlto/source_dir» for a local source tree may be used as an argument.

17.2 debmake -b

The debmake command with the -b option provides an intuitive and flexible method to create the initial
template debian/control file. This file defines the split of the Debian binary packages with the following
stanzas:

« Package:

¢ Architecture: (e.g. amd64)

e Multi-Arch: (see «Pa3gen 11.10»)
« Depends:

* Pre-Depends:

The debmake command also sets an appropriate set of substvars (substitution variables) used in
each pertinent dependency stanza.
Hwxe npmBoanTCS uMTaTa COOTBETCTBYIOLLEN YacTu cTpaHuLbl pykoBoacTea debmake.

-b, --binaryspec ”binarypackage[:type], ...” set the binary package specs by a comma separated list
of binarypackage:type pairs. Here, binarypackage is the binary package name, and the optional
type is chosen from the following type values:

150

https://www.example.org/DL/package-1.0.tar.xz
https://github.com/username/package.git

[7IABA 17. DEBMAKE OPTIONS 17.3. DEBMAKE -B

« bin: C/C++ compiled ELF binary code package (any, foreign) (default, alias: ””, i.e., null-
string)

» data: Data (fonts, graphics, ...) package (all, foreign) (alias: da)
« dev: naket c 6ubnmoTekoii pazpaboTkm (any, same) (ncesgoHum: de)
» doc: naket gokymeHTtauuu (all, foreign) (ncesgoHum: do)
* lib: naket c 6ubnmoTtekoii (any, same) (ncesgoHum: |)
* perl: naket co cueHapuem Ha A3bike Perl (all, foreign) (ncesgoHum: pl)
» python3: Python (version 3) script package (all, foreign) (alias: py3, python, py)
 ruby: naket co cueHaprem Ha A3blke Ruby (all, foreign) (ncesgoHum: rb)
» nodejs: Node.js based JavaScript package (all, foreign) (alias: js)
« script: Shell and other interpreted language script package (all, foreign) (alias: sh)
The pair values in the parentheses, such as (any, foreign), are the Architecture and Multi-Arch

stanza values set in the debian/control file. In many cases, the debmake command makes good
guesses for type from binarypackage. If type is not obvious, type is set to bin.

Here are examples for typical binary package split scenarios where the upstream Debian source
package name is foo:
» Generating an executable binary package foo:
- «-b’foo:bin’», or its short form «-b’-’», or no -b option
» Generating an executable (python3) binary package python3-foo:
- «-b’python3-foo:py’», or its short form «-b’python3-foo’»
» Generating a data package foo:
- «-b’foo:data’», or its short form «-b’-:data’»
« Generating a executable binary package foo and a documentation one foo-doc:
- «-b’foo:bin,foo-doc:doc’», or its short form «-b’-:-doc’»

» Generating a executable binary package foo, a library package libfool, and a library development
package libfoo-dev:

- «-b’foo:bin,libfool:lib,libfoo-dev:dev’» or its short form «-b’-,libfool,libfoo-dev’»

Ecnun cogepxumoe fepesa UCXOAHOIO KoAa He CoBNagaeT C HacTpoikamu nons mun, To KoMaHga
debmake BbIBOAUT NpeaynpexaeHune.

17.3 debmake -B

The debmake command invoked with the -B option can generate template files with .ex suffix. This is
handy if you want to see auto-generated template files to the existing ones.

17.4 debmake -x

KonnuecTBo wabnoHHbIX haiinos, codgaBaembix komaHgon debmake 3aBucut ot onummn -x[01234].

e See «Paszgen 15.1» for cherry-picking of the template files.

3ameyaHune

KomaHga debmake He MeHSIET HM OAUH U3 CYLLECTBYHOLWMX (DanoB HACTPOIKN.

151

	Предисловие
	Обзор
	Необходимые предварительные требования
	Люди вокруг Debian
	Как принять участие
	Социальная динамика Debian
	Техническая памятка
	Документация Debian
	Справочные ресурсы
	Ситуация с архивом
	Подходы к участию
	Начинающий участник и сопровождающий

	Настройка инструментов
	Email setup
	mc setup
	git setup
	quilt setup
	devscripts setup
	sbuild setup
	Persistent chroot setup
	gbp setup
	HTTP-прокси
	Частный репозиторий Debian
	Virtual machines
	Local network with virtual machines

	Simple packaging
	Packaging tarball
	Общая картина
	Что такое debmake?
	Что такое debuild?
	Шаг 1: получение исходного кода основной ветки разработки
	Step 2: Generate template files with debmake
	Шаг 3: изменение шаблонных файлов
	Step 4: Building package with debuild
	Step 3 (alternatives): Modification to the upstream source
	Patch by «diff -u» approach
	Patch by dquilt approach
	Patch by «dpkg-source --auto-commit» approach

	Basics for packaging
	Работа по созданию пакета
	debhelper package
	Имя пакета и версия
	Родной пакет Debian
	debian/rules file
	debian/control file
	debian/changelog file
	debian/copyright file
	debian/patches/* files
	debian/source/include-binaries file
	debian/watch file
	debian/upstream/signing-key.asc file
	debian/salsa-ci.yml file
	Other debian/* files

	Quality of packaging
	Reformat debian/* files with wrap-and-sort
	Validate debian/* files with debputy

	Check packaging with cme
	Sanitization of the source
	Fix with Files-Excluded
	Fix with «debian/rules clean»
	Fix with extend-diff-ignore
	Fix with tar-ignore
	Fix with «git clean -dfx»

	More on packaging
	Package customization
	Customized debian/rules
	Variables for debian/rules
	Новый выпуск основной ветки
	Manage patch queue with dquilt
	Build commands
	Note on sbuild
	Special build cases
	Upload orig.tar.xz
	Пропущенные загрузки
	Bug reports

	Продвинутые темы работы над пакетом
	Historical perspective
	Current trends
	Note on build system
	Непрерывная интеграция
	Предзагрузка
	Усиление безопасности компилятора
	Повторяемая сборка
	Переменные подстановки
	Пакет библиотеки
	Multiarch
	Split of a Debian binary package
	Сценарии и примеры разделения пакета
	Multiarch library path
	Multiarch header file path
	Multiarch *.pc file path
	Библиотека символов
	Library package name
	Смена библиотек
	Безопасная binNMU-загрузка
	Отладочная информация
	-dbgsym package
	debconf

	Packaging with git
	Salsa repository
	Salsa account setup
	Salsa CI service
	Branch names
	Patch unapplied Git repository
	Patch by «gbp-pq» approach
	Manage patch queue with gbp-pq
	gbp import-dscs --debsnap
	Note on gbp
	The Git repository browser
	Git commit history organization
	Quasi-native Debian packaging
	Patch applied Git repository
	Note on dgit

	Полезные советы
	Сборка с использованием кодировки UTF-8
	Преобразование в кодировку UTF-8
	Hints for Debugging

	Tool usages
	debdiff
	dget
	mk-origtargz
	origtargz
	git deborig
	dpkg-source -b
	dpkg-source -x
	debc
	bts
	dpkg-depcheck

	Дополнительные примеры
	Выборочное применение шаблонов
	Без Makefile (командная оболочка, интерфейс командной оболочки)
	Makefile (командная оболочка, интерфейс командной оболочки)
	pyproject.toml (Python3, CLI)
	Makefile (командная оболочка, графический интерфейс пользователя)
	pyproject.toml (Python3, GUI)
	Makefile (single-binary package)
	Makefile.in + configure (single-binary package)
	Autotools (single-binary package)
	CMake (single-binary package)
	Autotools (multi-binary package)
	CMake (multi-binary package)
	Интернационализация
	Детали

	Страница руководства debmake(1)
	НАЗВАНИЕ
	СИНТАКСИС
	ОПИСАНИЕ
	Positional arguments
	Options
	ПРИМЕРЫ
	ВСПОМОГАТЕЛЬНЫЕ ПАКЕТЫ
	ПРЕДОСТЕРЕЖЕНИЯ
	ОТЛАДКА
	АВТОР
	ЛИЦЕНЗИЯ
	СМОТРИТЕ ТАКЖЕ

	debmake options
	Shortcut option (-i)
	debmake -b
	debmake -B
	debmake -x

